
Making all equalities equal

Guilherme Horta Alvares da Silva

May 12, 2022

Abstract

1 Equalities
There are multiple ways of defining equalities in a theorem prover. In the next sections,
they will be defined.

1.1 Imports
First, it will be necessary to give some agda arguments:

{-# OPTIONS --cubical --cumulativity #-}
module paper where

The cubical flag is necessary because we are using cubical equality, and the cumu-
lative flag is also necessary for level subtyping,

open import Agda.Primitive.Cubical using (I; i0; i1)

Private variables are required, so it is not necessary to redefine them later as an
implicit variable.

open import Cubical.Core.Primitives using (Level; `-max)

private variable
` `’ : Level
A : Set `

This library loads Cubical Agda Primitives as the equality interval.

1.2 Martin-Löf Equality
At the beginning of Agda and in most theorems proves, equality is given by Martin-
Löf’s definition:

1

module Martin-Löf {A : Set `} where
data ≡ (x : A) : A→ Set ` where

refl : x ≡ x

This equality is very convenient in proof assistances like Agda because it is possible
to pattern match using them:

private variable
x y z : A

sym : x ≡ y→ y ≡ x
sym refl = refl

trans : x ≡ y→ y ≡ z→ x ≡ z
trans refl refl = refl

But the problem of this equality is that it does not handle extensionality and other
axioms very well.

module FunExt {A : Set `} {B : Set `’} where
open Martin-Löf

funExt-Type = {f g : A→ B}
→ ((x : A)→ f x ≡ g x)→ f ≡ g

1.3 Cubical Equality
To solve this problem, Agda adopted cubical type theory that equality is a function
from the path to type:

module CubicalEquality {A : Set `} where
postulate

PathP : (A : I→ Set `)→ A i0→ A i1→ Set `

≡ : A→ A→ Set `
≡ = PathP λ → A

From this equality, I will define reflection, symmetry and extensionality:

module CubicalResults {A : Set `} {B : Set `’} where
open import Cubical.Core.Primitives

private variable
x y z : A

refl : x ≡ x
refl {x = x} = λ → x

2

sym : x ≡ y→ y ≡ x
sym p i = p (˜ i)

funExt : {f g : A→ B}
→ ((x : A)→ f x ≡ g x)→ f ≡ g

funExt p i x = p x i

The operator ∼ invert the interval. If the interval i goes from i0 to i1, the interval
∼ i goes from i1 to i0.

1.4 Leibniz equality
Leibniz equality is defined in this way: If a is equal to b, then for every propositional
P, if P a, then P b. The main idea is that if both values are equal, then they are seen
equal for every angle.

module LeibnizEquality {A : Set} where
� : A→ A→ Set 1

a � b = (P : A→ Set)→ P a→ P b

2 Joining all equalities
All equalities have something in common. They are all equal to each other. So it will
be defined as a common record that all equalities should have. In the next definition,
all equalities are equal to cubical equality:

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Function
open import Cubical.Data.Equality

module {`} {A : Set `’} where
,-Type = A→ A→ Set `
private
` 1 = `-max `’ `

private variable
x y z : A

record IsEquality (, : ,-Type) : Set (`-suc ` 1) where
constructor eq
field
,-≡-≡ : let

3

x≡y : Type ` 1
x≡y = x ≡ y

x,y : Type ` 1
x,y = x , y

in ≡ {`-suc ` 1} x,y x≡y

≡-≡-, : let
x≡y : Type ` 1
x≡y = x ≡ y
x,y = x , y
in x≡y ≡ x,y

≡-≡-, = sym ,-≡-≡

module { , : ,-Type} where
sym-Equality : (≡-≡-, : {x y : A}→ let

x≡y : Type ` 1
x≡y = x ≡ y
x,y = x , y
in x≡y ≡ x,y)
→ IsEquality ,

sym-Equality ≡-≡-, = eq (sym ≡-≡-,)

record Equality : Set (`-suc ` 1) where
constructor eqC
field
, : ,-Type
{ isEquality } : IsEquality ,

EqFromInstance : {, : ,-Type}→ IsEquality ,→ Equality
EqFromInstance inst = eqC { inst }

eqsEqual : (, 1 , 2 : ,-Type)
{ , 1-eq : IsEquality , 1 }

{ , 2-eq : IsEquality , 2 }

→ ∀ {x y}→ let
x, 1y : Type ` 1
x, 1y = x , 1 y

x, 2y : Type ` 1
x, 2y = x , 2 y

in ≡ {`-suc ` 1} x, 1y x, 2y
eqsEqual { eq ,-≡-≡ 1 } { eq ,-≡-≡ 2 } = ,-≡-≡ 1 • sym ,-≡-≡ 2

It will be defined for each equality, its instance:

4

2.1 Cubical Equality
The simplest example is cubical equality hence this equality is already equal in itself.

module {a} {A : Set a} where
instance
≡-IsEquality : IsEquality {A = A} ≡
≡-IsEquality = eq refl
≡-Equality : Equality {` = a}
≡-Equality = eqC ≡

2.2 Martin-Löf equality
The proof of Martin-Löf equality is more difficult, but it is already in the Cubical library
as p-c.

instance
≡p-IsEquality : IsEquality {A = A} ≡p
≡p-IsEquality = sym-Equality p-c
≡p-Equality : Equality {` = a}
≡p-Equality = eqC ≡p

2.3 Isomorphism
Isomorphism is equality between types.

module {`} where
univalencePath’ : {A B : Type `}→ (A ≡ B) ≡ (A ' B)
univalencePath’ {A} {B} =

ua {`-suc `} {A ≡ B} {A ' B} (compEquiv (univalence {`} {A} {B})
(isoToEquiv (iso {`} {`-suc `}
(λ x→ x) (λ x→ x) (λ b i→ b) λ a i→ a)))

univalencePath is already defined in Agda library, but with A ' B instead of Lifted
(A ' B). This change can be done because of the cumulative flag.

instance
'-IsEquality : IsEquality
{A = Type `} '
'-IsEquality = sym-Equality univalencePath’
'-Equality : Equality {` = `}
'-Equality = eqC '

5

2.4 Leibniz Equality
The hardest equality to prove that is equality is the Leibniz Equality.

liftIso : {A : Type `} {B : Type `’}
→ Iso {`} {`’} A B→ Iso {`-max ` `’} {`-max ` `’} A B

liftIso f = iso fun inv
(λ x i→ rightInv x i) (λ x i→ leftInv x i)

This liftIso will be used to lift the Isomorphism to types of the same maximum level
of both.

where open Iso f

open import leibniz
open Leibniz

It is importing the definition of Leibniz equality made by [?]. In this work, there is
already proof of the isomorphism between Leibniz and Martin-Löf equality.

module FinalEquality {A : Set} where
open MainResult A
private variable

x y z : A

��≡ : Iso (x � y) (x ≡p y)
��≡ = iso j i (ptoc ◦ ji) (ptoc ◦ ij)

In Cubical Library, the definition of isomorphism uses cubical equality instead of
Martin-Löf equality when we have to prove that ∀ x → from (to x) ≡ x and ∀ x → to
(from x) ≡ x. ptoc is necessary to do this conversion from these equalities.

�≡≡ : (x � y) ≡c (x ≡p y)
�≡≡ = let lifted = liftIso ��≡ in isoToPath lifted

Using the univalence and liftIso defined previously, it is possible to transform the
isomorphism into equality.

open IsEquality

instance
�-IsEquality : IsEquality {A = A} �
�-IsEquality = eq λ {x} {y}→ �≡≡ •
λ i→ ≡p-IsEquality {`-zero} .,-≡-≡ {x} {y} i

�-Equality : Equality {` = `-suc `-zero}
�-Equality = eqC �

The last pass is to join the three equalities between equalities: Leibniz to Martin-
Löf to cubical equality.

6

3 New Equalities types
The equalities used previously were defined using cubical equality. Now I will define
them using other equalities.

module Equalities {a `} {A : Set a} where
private
,-Type’ = ,-Type {a} {`} {A}
` 1 = `-max a `

private variable
x y z : A

Loaded the modules using the levels to be more generic.

module
(Eq 1 : Equality { } {`} {A})
where

open Equality Eq 1 renaming (, to ≡ 1 ; isEquality to eq 1)

I am importing generic equality to use it to define more generic equality.

record IsEquality 2 (, : ,-Type’) : Set (`-suc ` 1) where
constructor eq
field
,-≡-≡ : let

x≡y : Type ` 1
x≡y = x ≡ 1 y

Different from previously definition of IsEquality, the cubical equality defined in
the line above was substituted by the more generic equality ≡ 1.

x,y : Type ` 1
x,y = x , y

in ≡ {`-suc ` 1} x,y x≡y

≡-≡-, : let
x≡y : Type ` 1
x≡y = x ≡ 1 y
x,y = x , y
in x≡y ≡ x,y
≡-≡-, = sym ,-≡-≡

The rest of the definition is the same.

7

instance
,-isEquality : IsEquality ,
,-isEquality = eq (,-≡-≡ • IsEquality.,-≡-≡ eq 1)

From a more generic definition of equality, it is easily possible to return to the less
generic definition.

module
(Eq 2 : Equality { } {`} {A})
where

open Equality Eq 2 renaming (, to ≡ 2 ; isEquality to eq 2)

I am defining a new generic equality to prove that it is an equality of type 2:

eqsEqual 2 : let
x, 1y : Type ` 1
x, 1y = x ≡ 1 y

in x, 1y ≡ (x ≡ 2 y)
eqsEqual 2 = eqsEqual ≡ 1 ≡ 2

instance
≡ 2-Equality 2 : IsEquality 2 ≡ 2
≡ 2-Equality 2 = eq (sym eqsEqual 2)

where open IsEquality

module { , : ,-Type} where
sym-Equality 2 : (≡-≡-, : {x y : A}→ let

x≡y : Type ` 1
x≡y = x ≡ 1 y
in x≡y ≡ (x , y))
→ IsEquality 2 ,

sym-Equality 2 ≡-≡-, = eq (sym ≡-≡-,)

Given a symmetric definition of the previous equality, it is easy to prove that it is
also equality of type 2.

3.1 Everything is an equality
In this part, a relation is equality when it is equal (using general equality) to cubical
equality.

module
(Eq 3 : Equality {A = Set ` 1})
where

8

open Equality Eq 3 renaming (, to ≡ 3 ; isEquality to eq 3)

record IsEquality 3 (, : ,-Type’) : Set (`-suc ` 1) where
constructor eq
field
,-≡-≡ : (x , y) ≡ 3 (x ≡ 1 y)

With this definition of equality, it is possible to prove that if equality is equal to
cubical equality, so it is equal (using the general or cubical equality) to the cubical
equality.

instance
,-isEquality 2 : IsEquality 2 ,
,-isEquality 2 = eq (transport (IsEquality.,-≡-≡ eq 3) ,-≡-≡)

,-isEquality : IsEquality ,
,-isEquality = eq (IsEquality 2.,-≡-≡ ,-isEquality 2 • IsEquality.,-≡-≡ eq 1)

This is proof that the symmetric definition of equality is also valid.

≡-≡-, : (x ≡ 1 y) ≡ 3 (x , y)
≡-≡-, = let
α 1 = IsEquality.≡-≡-, eq 3
α 2 = IsEquality.,-≡-≡ eq 1
α 3 = IsEquality.≡-≡-, ,-isEquality
in transport α 1 (α 2 • α 3)

It is possible to prove that a general equality is equality from this definition:

module
(Eq 2 : Equality { } {`} {A})
where

open Equality Eq 2 renaming (, to ≡ 2 ; isEquality to eq 2)

instance
≡ 2-Equality 3 : IsEquality 3 ≡ 2
≡ 2-Equality 3 = eq α

where
open IsEquality eq 3
α : (x ≡ 2 y) ≡ 3 (x ≡ 1 y)
α = transport ≡-≡-, (IsEquality 2.,-≡-≡ (≡ 2-Equality 2 (eqC ≡ 2)))

If there is proof of symmetrical equality, so it is also equality from this definition:

module { , : ,-Type’} where

9

sym-Equality 3 :
(≡-≡-, : ∀ {x y}→ (x ≡ 1 y) ≡ 3 (x , y))
→ IsEquality 3 ,

sym-Equality 3 ≡-≡-, = eq (let
α 1 = IsEquality.≡-≡-, eq 3
α 2 = transport (sym α 1) ≡-≡-,
in transport α 1 (sym α 2))

4 Using the definitions
The best part of defining all of this stuff is that it is now easy to prove that Leibniz
equality is equality.

module LeibnizFromPEquality {A : Set} where
open Equalities {`-zero} {`-suc `-zero}

≡p 1 : A→ A→ Set 1
x ≡p 1 y = x ≡p y

I redefined this equality because it must be a set of universe one. And because of
that, I have to prove again that this is an equality:

instance
≡p 1-isEquality : IsEquality ≡p 1
≡p 1-isEquality = eq λ {x y}→ (sym λ i→ let
α : Type 1
α = p-c {`-zero} {x = x} {y = y} i
in α)

With just one line of code, it is possible now to prove that Leibniz equality is an
equality from Martin-Löf Equality.

leibniz : IsEquality {A = A} �
leibniz = IsEquality 2.,-isEquality {Eq 1 = eqC ≡p } (eq FinalEquality.�≡≡)

10

