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A Simplified version of Bitcoin, implemented in Agda Guilherme H. A. Silva

Abstract
A cryptocurrency is a digital currency that works in a decentralized way, without
a central authority and its states are maintained through distributed consensus. It
has an important role in society because it is money that is ruled only by algorithms
and it avoids big central power, like banks and government.

Agda is a functional programming language with dependent types. It is also a proof
assistant based on the preposition-as-types paradigm, like Coq. This language is
useful to prove properties about the code.

We present in this work an explanation about what is cryptocurrencies and their
principal characteristics, a brief explanation about Lambda Calculus, dependents
types and Agda, and we present a cryptocurrency model made in this language.
Most of all parts of Bitcoin are coded and typed in this model. Since transactions,
transactions tree, ledger, block, and blockchain. Cryptographic functions are all
postulated like hash functions, transformation functions of a private key into a public
key and addresses. Besides, in this work, there is code that transforms and validates
transactions from plain text into our model.

Keywords: verification; formal methods; Agda; smart contract; Blockchain;
cryptocurrency; Bitcoin
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Resumo
Uma criptomoeda é uma moeda digital que funciona de maneira descentralizada, sem
uma autoridade central e seus estados são mantidos por meio de consenso distribuído.
Ela tem um papel importante na sociedade, porque é um dinheiro que é governado
apenas por algoritmos e evita grande centralização de poder, como a de bancos e a
do governo.

Agda é uma linguagem de programação funcional com tipos dependentes. É também
um assistente de prova baseado no paradigma de preposição como tipos, assim como
Coq. Essa linguagem é útil para provar propriedades sobre o código.

Apresentamos nesse trabalho uma explicação sobre o que são criptomoedas e suas
principais características, uma breve explicação sobre o Lambda Calculus, tipos de
dependentes e Agda, e apresentamos um modelo de criptomoeda feito nessa lin-
guagem. A maioria das partes do Bitcoin é codificada e programada nesse modelo.
Desde transações, árvore de transações, Ledger, bloco e cadeia de blocos. As funções
criptográficas, como funções hash, funções de transformação de uma chave privada
em uma chave pública e seus endereços, são postuladas. Além disso, neste trabalho,
há código que transforma e valida transações de um texto sem formatação para o
nosso modelo.
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1 Introduction

1.1 History of Cryptocurrencies

In 1983, David Chaum created ecash (Panurach, 1996) an anonymous cryptographic
electronic money. This cryptocurrency use Rivest Shamir Adleman (RSA) blind
signatures (Chaum, 1983) to spend transactions. Later, in 1989, David Chaum found
an electronic money corporation called DigiCash Inc. It was declared bankruptcy in
1998.

Adam Back developed a Proof-of-Work (PoW) scheme for spam control, Hashcash
(Back et al., 2002). To send an email, the hash of the content of this email plus a
nonce has to have a numerical value smaller than a defined target. So, to create a
valid email, the sender (miner) has to spend a considerable Central Processing Unit
(CPU) resource on it. Miners should calculate a lot of hash values before finding a
valid one. This idea is used in Bitcoin proof of work because each block has a nonce
guessed by the miner and the hash of the block has to be less than the target value.

Wei Dai proposes b-money (Dai, 1998) for the first proposal for distributed digital
scarcity. And Hal Finney created Bit Gold (Wallace, 2011), a reusable proof of work
for hash cash for its algorithm of proof of work.

On 31 October 2008, Satoshi Nakamoto registered the website “bitcoin.org” and put
a link for his paper (Nakamoto et al., 2008) in a cryptography mailing list. In
January 2009, Nakamoto released the Bitcoin software as an open-source code. The
identity of Satoshi Nakamoto is still unknown. Since that time, the total market of
Bitcoin came to 330 billion dollars in 17 of December of 2018 when its value reached
a historic peak of 20 thousand dollars.

Other cryptocurrencies like Ethereum (Wood et al., 2014), Monero (Noether, 2015)
and ZCash (Hopwood, Bowe, Hornby, & Wilcox, 2016) were created after Bitcoin,
but Bitcoin is still the cryptocurrency with the biggest market value.

Ethereum is a cryptocurrency that uses an account model instead of Unspent Trans-
action Output (UTXO) used in Bitcoin for its transaction data structure. It uses
Solidity as its programming language for smart contracts which resembles Javascript,
so it is easier to program in it than in the stack machine programming language of
Bitcoin. Ethereum changed from proof of work (used in Bitcoin) to proof of stake
which is now the default proof mechanism of Ethereum 2.0.

Monero and ZCash are both cryptocurrencies that focus on fungibility, privacy,
and decentralization. Monero uses an obfuscated public ledger, so anyone can send
transactions, but nobody can tell the source, amount or destination. ZCash uses
the concept of zero-knowledge proof called Zero-Knowledge Succinct Non-Interactive
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Argument of Knowledge (zk-SNARK), which guarantees privacy for its users.

1.2 Objectives

Cryptocurrencies are used as money and in smart contracts in a decentralized way.
Because of that, it is not possible to revert a transaction or undo the creation of
the smart contract. There is no legal framework or agent to solve a problem in case
of the existence of a bug. Because of that, the formal proofs are desirable in the
cryptocurrency protocol. So it can avoid big financial loss.

In the case of Bitcoin, if there is some problem in the source code, it is possible to
fix it using soft or hard forks. In soft fork, there is an upgrade in the software that
is compatible with the old software. So it is possible the existence of old and new
nodes in the same Bitcoin network. In hard forks, all the nodes should be upgraded
at the same time. Because the newer version is not compatible with the older one.
So it is very dangerous to do this kind of fork. Therefore in Bitcoin, this kind of fork
just happened twice by accident. It happened in 2013, because of the BerkeleyDB
issue and it was solved in BIP 0050. And happened in 2018, because of Denial of
Service and inflation vulnerability bug.

In Bitcoin, the uniqueness of transaction Identity (ID) was not guaranteed. To fix
this problem, it should put the block number in the coinbase transaction. This kind
of change was solved in a soft fork named SegWit.

In Ethereum, there was a bug in Decentralized Autonomous Organization (DAO)
smart contract. Malicious users exploited a vulnerability in it with a total loss of
150 million dollars. There was a hard fork to undo most of the transactions that
exploited this contract. This kind of hard fork violates the principle that smart
contracts should be ruled just by algorithms without any human intervention. The
old Ethereum blockchain that has not done the fork became the Ethereum Classic.
It is the version of Ethereum that has never done a hard fork before.

The objective of this work is to give a formal definition of what a cryptocurrency
should be. There are some different definitions of a cryptocurrency in this work, but
there are some formal proofs that they are the same.

Given that cryptocurrencies and smart contracts should have guarantees of their
correctness, it is very important to verify their protocols. The creation of formal
methods for Bitcoin protocol and the proof of its correctness are the objective of
this work.

So, we are proposing a model of Bitcoin using an interactive theorem prover and
dependently typed programming language Agda. We include a formalization of
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transactions, transactions tree, blocks, blockchain and how messages are signed. In
this work, we also include functions that transform raw transactions (made with
simple types like lists, naturals) to transactions with dependent types.

1.3 Related Work

Beukema (Beukema, 2014) was one of the first to try to define a formal specification
of Bitcoin. In this works, functions interfaces of Bitcoin and what they should do
were defined. Most of these functions define how the Bitcoin Network protocol should
be. In this work, he does not utilize any programming language with dependent types
like Agda or CoQ. mCRL2, a specification programming language, was used.

Chaudhary and his team (Chaudhary, Fehnker, Van De Pol, & Stoelinga, 2015) have
created a model of Bitcoin blockchain in the model checker UPPAAL. In his work,
they calculate the probability of a malicious attack to succeed in doing a double
spend. For a small number of blocks, it is easier to do this attack. Because of that,
it is usually recommended that the user waits for more blocks confirmations after a
big transaction.

Bastiaan (Bastiaan, 2015) showed a stochastic model of Bitcoin using continuous
Markov chains. In his work, he proposes a way of avoiding a 51% attack in the
network, using two-phase proof of work.

Orestis Melkonian (Melkonian, 2019) in his masters have done the formal specifica-
tion of BitML (smart contract language) in Agda. BitML can be compiled to Script,
the smart contract language of Bitcoin.

Kosba (Kosba, Miller, Shi, Wen, & Papamanthou, 2016) in his work made a pro-
gramming language called Hawk for smart contracts. This language uses formal
methods to verify privacy using zero-knowledge proofs. Using this language, the
programmer does not have to worry about implementing the cryptography, because
the compiler generates automatically an effective one.

Bhargavan (Bhargavan et al., 2016) translated Solidity and Ethereum bytecode into
F*. He verified that the Ethereum DAO bug was caught in its translation. Nowa-
days, they have an implementation of Ethereum Virtual Machine (EVM) and Solid-
ity in OCaml, but they want to have a full implementation of EVM in F* too.

Luu (Luu, Chu, Olickel, Saxena, & Hobor, 2016) built a symbolic execution tool
named OYENTE to look for potential bugs. In his work, he found a lot of contracts
with real bugs. One of these bugs was the DAO bug, that caused a loss of 60 million
dollars. He used Z3 to find a potentially dangerous path of code.

Anton Setzer (Setzer, 2018) also contributed to modeling Bitcoin. He coded in Agda
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the definitions of transactions and transactions tree of Bitcoin. Orestis Melkonian
starts to formalize Bitcoin Script.

My work tries to extend the Anton Setzer model and makes it possible to use the
Bitcoin protocol from inputs and outputs from plain text. For example, the user
sends a transaction in plain text to the software and it validates if it is correct. To
use the Anton Setzer model, the user has to send the data and the proof that are
both valid.
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2 Relevant Background

2.1 Agda Introduction

Agda is a dependently typed functional language developed by Norell at the Chalmers
University of Technology as his Ph.D. Thesis. The current version of Agda is Agda
2.

2.1.1 Syntax

In Agda, Set is equal to type. In languages with dependent types, it is possible to
create a function that returns a type.

bool→Set : (b : Bool) → Set
bool→Set b = if b then N else Bool

After the function name, it is two colons (:) and the arguments of the function. It is
closed by (name_of_argument : type_of_argument). After all, there is one arrow
and the type of the result of the function. This “if, then, else” is not a function
built-in in Agda. It is a function defined this way if_then_else_ .

So it is possible to use this function in the default way.

bool→Set-und : Bool → Set
bool→Set-und b = if_then_else_ b N Bool

Or use the arguments inside the underscore.

bool→Set’ : Bool → Set
bool→Set’ b = if b then N else Bool

The same notation can be done using just arrows without naming the arguments.

Because of dependent types, it is possible to have a type that depends on the input.

It is possible in Agda to do the pattern match. So it breaks the input in cases.

boolean→Set : (b : Boolean) → Set
boolean→Set true = N
boolean→Set false = Bool

To create a new type with a different pattern match, it is used the data constructor.
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data Boolean : Set where
true : Boolean
false : Boolean

This is another example of Data Set, but it depends on the argument.

data Vec : N → Set where
[] : Vec zero
_::_ : {size : N} → N → Vec size → Vec (suc size)

nil : Vec zero
nil = []

vec-one : Vec (suc zero)
vec-one = zero :: nil

Vector zero is a type of a vector of size zero, so the only option to construct it
is the empty vector. It is constructed from the first constructor. Other types of
vectors like Vector 1 (vector of size one), Vector 2, ... can only be constructed by
the second constructor. It takes as argument a natural number and a vector and
returns a vector with the size of the last vector plus one.

Records are data types with just one case of pattern match.

record Person : Set where
constructor person
field
name : String
age : N

agePerson : (person : Person) → N
agePerson (person name age) = age

The constructor is the name of the data constructor.

Implicit terms are elements that the compiler is smart enough to deduce it. So it is
not necessary to put it as an argument of the function.

id : {A : Set} (x : A) → A
id x = x
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Implicit arguments are inside {}. In this example, the name of the Set (A) can not
be omitted (like the second function version of boolean to set), because it is used to
say that x is of type A.

In the case of the function id, the type of input can be deduced by the compiler. For
example, id function should be a function from Natural to Natural because zeroN
is already of type Natural. In this example, the compiler could figure out the term
A (Natural) of type Set.

zeroN : N
zeroN = id zero

Functions in Agda can be defined in two ways

id-nat : N → N
id-nat x = x

id-nat’ : N → N
id-nat’ = ń x → x

In the first case, the arguments are before equal sign (=). In the second case, it is
used the lambda abstraction that means the same thing.

case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x

filter : {A : Set} → (A → Boolean) → List A → List A
filter p [] = []
filter p (x :: xs) =
case p x of
ń { true → x :: filter p xs
; false → filter p xs
}

Filter is a function that filters all elements that have some property already defined.
In this definition of filter, the lambda abstraction can pattern match in the two
possibilities of p x, that are true or false

filter’ : {A : Set} → (A → Boolean) → List A → List A
filter’ p [] = []
filter’ p (x :: xs) with p x
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... | true = x :: filter’ p xs

... | false = filter p xs

The with abstraction is the same thing as the case of. Before the =, there are the
possibilities of p x (true or false).

postulate someBot : ⊥

In Agda, the postulate assumes that there is one element of a given type without
defining it. In this example, someBot is an element of the empty type. Postulate
can be dangerous because it assumes that some element of a given type exists, but
it can not (like in the example).

postulate P : N → Set
postulate plus-commute : (a b : N) → a + b ≡ b + a

thm : (a b : N) → P (a + b) → P (b + a)
thm a b t rewrite plus-commute a b = t

In Agda, rewrite means changing the returned type of the result. Because a + b ≡
b+ a, returning an element of the type P (a+ b) is the same thing that returning an
element of the type P (b+ a).

2.1.2 Lambda Calculus

Lambda Calculus is a minimalist Turing complete programming language with the
concept of abstraction, application using binding and substitution. For example, x
is a variable, (λx.M) is an Abstraction and (M N ) is an Application.

In Lambda Calculus, there are two types of computational conversions α-conversion
and β-reduction. In α-conversion, (λx.M [x])→ (λy.M [y]). So in every free variable
x in M will be renamed to y. For M[x] = x, an α-conversion is (λx.x)→ (λy.y)

A free variable is every variable that is not bound outside. For example, ((λx.x)x).
The blue x is bonded for the green x, but the red x is not bonded for any function.
So the red x is a free variable.

In β-reduction, it replaces the all free for the expression in the application. The
β-reduction of this expression ((λx.M)N) → (M [x := N ]) . So if M = x, the
β-reduction will be ((λx.x)N) → N . If M = (λx.x)x, the β-reduction will be
(λx.((λx.x)x))N → (λx.x)N .
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Agda uses typed lambda calculus. So in an application (M N), M has to be of type
A ⇒ B and N has to be of type A. (λ(x : A).x) is of type A ⇒ A, because x is of
type A.

id : {A : Set} → A → A
id = ń x → x

The simplest function is the identity function made in Agda.

id’ : {A : Set} → A → A
id’ x = x

This is another way of writing the same function.

true : {A : Set} → A → A → A
true x y = x

false : {A : Set} → A → A → A
false x y = y

This is how true and false are encoded in lambda calculus.

zero : {A : Set} → (A → A) → A → A
zero suc z = z

one : {A : Set} → (A → A) → A → A
one suc z = suc z

two : {A : Set} → (A → A) → A → A
two suc z = suc (suc z)

This is how naturals numbers are defined in lambda calculus. Look that the defini-
tion of zero looks like the definition of false.

isZero : {A : Set} → ((A → A) → A → A) → (A → A → A)
isZero n true false = n (ń _ → false) true

isZero-zero : {A : Set} → Result (isZero {A} zero)
isZero-zero = res (ń true false → true)

isZero-two : {A : Set} → Result (isZero {A} two)
isZero-two = res (ń true false → false)
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Defining natural numbers in this way, it is possible to say if a natural number is zero
or not.

plus : {A : Set} → ((A → A) → A → A)
→ ((A → A) → A → A)
→ ((A → A) → A → A)

plus n m = ń suc z → n suc (m suc z)

_+_ : {A : Set} → ((A → A) → A → A)
→ ((A → A) → A → A)
→ ((A → A) → A → A)

_+_ n m suc z = n suc (m suc z)

Plus is defined this way using lambda calculus.

one+one : {A : Set} → Result (_+_ {A} one one)
one+one = res (ń suc z → suc (suc z))

This is one example of the calculation of one plus one in Lambda Calculus.

emptyList : {A List : Set}
→ (A → List → List) → List → List

emptyList _::_ nil = nil

natList : {A List : Set}
→ (((A → A) → A → A) → List → List) → List → List

natList _::_ nil = one :: (two :: nil)

This is how lists are defined in Lambda Calculus.

sumList : {A List : Set}
→ Result (natList {A} {(A → A) → A → A} _+_ zero)

sumList = res (ń suc z → suc (suc (suc z)))

Substituting the cons operation of list per plus and nil list to zero, it is possible to
calculate the sum of the list.

left : {A B C : Set} → A → (A → C) → (B → C) → C
left x f g = f x

right : {A B C : Set} → B → (A → C) → (B → C) → C
right x f g = g x
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In this way, it is possible to define Either. It is one way to create a type that can
be a Natural or a Boolean.

zero-left : ∀ {A B C}
→ (((A → A) → A → A) → C) → (B → C) → C

zero-left = left zero

one-left : ∀ {A B C}
→ (((A → A) → A → A) → C) → (B → C) → C

one-left = left one

false-right : ∀ {A B C}
→ (A → C) → ((B → B → B) → C) → C

false-right = right false

true-right : ∀ {A B C}
→ (A → C) → ((B → B → B) → C) → C

true-right = right true

In these examples, it is defined zero, one in left and false, true in right.

zero-isZero : ∀ {A}
→ Result (zero-left {A} isZero id)

zero-isZero = res (ń true false → true)

one-isZero : ∀ {A}
→ Result (one-left {A} isZero id)

one-isZero = res (ń true false → false)

false-id : ∀ {A}
→ Result (false-right {(A → A) → A → A} isZero id)

false-id = res (ń true false → false)

true-id : ∀ {A}
→ Result (true-right {(A → A) → A → A} isZero id)

true-id = res (ń true false → true)

Either is useful when defining one function that works for left and another that
works for the right. If the natural number is zero, the function chosen is the left and
if it is an identity, the function chosen is the right.

tuple : {A B C : Set} → A → B → (A → B → C) → C
tuple x y f = f x y
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This way is how tuple is defined in Lambda Calculus.

zero-false : {A B C : Set} → (((A → A) → A → A)
→ (B → B → B) → C) → C

zero-false = tuple zero false

one-true : {A B C : Set} → (((A → A) → A → A)
→ (B → B → B) → C) → C

one-true = tuple one true

This is how is defined the tuple zero false and the tuple one true.

add-true : {A : Set} → ((A → A) → A → A)
→ (A → A → A) → ((A → A) → A → A)

add-true n b suc z = b (suc (n suc z)) (n suc z)

add-zero-false : {A : Set}
→ Result (zero-false {(A → A) → A → A} add-true)

add-zero-false = res (ń suc z → z)

add-one-true : ∀ {A}
→ Result (one-true {(A → A) → A → A} add-true)

add-one-true = res (ń suc z → suc (suc z))

This is one way of defining a function that adds one to the argument if the first
element of the tuple is true.

2.1.3 Martin-Löf Type Theory

Agda also provides proof assistants based on the intentional Martin-Löf type theory.

In Martin-Löf type theory, there are three finite types and five constructors types.
The zero type contains zero terms. It is called the empty type and it is written ⊥.

data ⊥ : Set where

⊥-elim : {A : Set} (bot : ⊥) → A
⊥-elim ()

The first type is the type with just one canonical term and it represents existence.
It is called unit type and it is written top.

data > : Set where
tt : >
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The second type contains two canonical terms. It represents a choice between two
values.

data Either {l : Level} (A : Set l) (B : Set l) : Set l where
left : (l : A) → Either A B
right : (r : B) → Either A B

Either-elim : {l l2 : Level} {A B : Set l}
{motive : (eab : Either A B) → Set l2}
(target : Either A B)
(on-left : (l : A) → (motive (left l)))
(on-right : (r : B) → (motive (right r)))
------------------------------------------
→ motive target

Either-elim (left l) onleft onright = onleft l
Either-elim (right r) onleft onright = onright r

The Boolean type is defined using the Trivial type and the Either type.

Bool : Set
Bool = Either > >

If statement is defined using booleans.

if_then_else_ : {l : Level} {A : Set l}
(b : Bool) (tRes fRes : A) → A

if b then tRes else fRes =
Either-elim b (ń _ → tRes) ń _ → fRes

2.1.4 Types Constructors

The product-types contain an ordered pair. The second type can depend on the first
type.

data
∑

(A : Set) (B : A → Set) : Set where
〈_,_〉 : (x : A) → B x →

∑
A B∑

-elim : ∀ {A : Set} {B : A → Set} {C : Set}
→ (∀ x → B x → C)
→

∑
A B
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---------------
→ C∑
-elim f 〈 x , y 〉 = f x y

∃-vec : {A : Set} →
∑

N (ń n → Vector A n)
∃-vec = 〈 zero , [] 〉

In the function ∃− vec, the product-type has the same meaning of exists. This type
means that “Exists a natural number n that there is one element of type Vector A
n”

The π-types contain functions. So given an input type, it will return an output type.
It has the same meaning as a function:

∀-elim : ∀ {A : Set} {B : A → Set}
(L : ∀ (x : A) → B x)
(M : A)
-----------------
→ B M
∀-elim L M = L M

In Inductive types, it is a self-referential type. Naturals numbers are examples of
that:

data N : Set where
zero : N
suc : N → N

Other data structures like a linked list of natural numbers, trees, graphs are inductive
types too.

Proofs in inductive types are made by induction.

N-elim : (target : N) (motive : (N → Set))
(base : motive zero)
(step : (n : N) → motive n → motive (suc n) )
→ motive target

N-elim zero motive base step = base
N-elim (suc target) motive base step =
step target (N-elim target motive base step)

Universe types are created to allow proofs written in all types. For example, the
type of Nat is U0.
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Agda has dependent types like in CoQ but does not have tactics. Agda is a total
language, so it is guaranteed that the code always finish (impossible infinite loops)
and coverage all inputs.

Agda has inductive data types that are similar to algebraic data types in non-
dependently typed programming languages. The definition of Peano numbers in
Agda is:

data N : Set where
zero : N
suc : N → N

Definitions in Agda are done using induction. For example, the sum of two numbers
in Agda:

_+’_ : N → N → N
zero +’ m = m
suc n +’ m = suc (n + m)

In Agda, because of dependent types, it is possible to make more expressive types
that are not possible in other languages. For example, get the first element of a
vector. For it, it is necessary to specify in the type that the vector should have a
size greater than zero.

head : {A : Set} {n : N} (vec : Vector A (suc n)) → A
head (x :: vec) = x

Another good example is that in the sum of two matrices, they should have the same
dimensions.

_+m_ : {m n : N} (P Q : Matrix N m n) → Matrix N m n
[] +m [] = []
(vx :: P) +m (vy :: Q) = (vx +v vy) :: (P +m Q)

2.1.5 Preposition as Types

In Agda, types can be seen as prepositions and terms of this given type like a proof.
For example, x can be a term of the type A. So x is a proof that A holds.

id : {A : Set} (x : A) → A
id x = x
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Figure 1: Transaction

In the function id, if there is a proof x that A holds, so A holds. The function id is
a proof of A→ A.

_and_ : {A B : Set} → A → B → A × B
a and b = a , b

In the function and, a is a proof that A holds and b is a proof that B holds, so a ,
b is a proof of A×B

eq : ∀ {A : Set} (x : A) → x ≡ x
eq x = refl {_} {_} {x}

Equality function can be seen as “For all elements of x in the Set A, x ≡ x”. If there
is a term of this type, so this preposition is true. In this case, the term is a function
that given a term x of type A, it returns refl {_} {_} {x}. refl is a constructor of
equality, so refl {_} {_} {x} returns a term of type x ≡ x.

2.2 Bitcoin Overview

The Bitcoin was made to be a peer to peer electronic cash. It was made in one
way that users can save and verify transactions without the need of a trusted party.
Because of that no authority or government can shut down the Bitcoin.
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Figure 2: Bitcoin account

Transactions in Bitcoins (like in Figure 1) are an array of input of previous trans-
actions and an array of outputs. Each input and output is an address, each address
is made from a public key that is made from a private key.

A private key is a big number. It is so big that it is almost impossible to generate
two identical private keys.

The public key is generated from the private key (like in Figure 2 where the account
number is f(p)), but a private key can not be generated from a public key.

In Bitcoin, the miner is someone that calculates a value nounce for each block.
Because of that, he receives all transaction fees of this block plus a block reward.
The mining transaction (made for the miner) does require an input. For each input
transaction, it is necessary a signature signed with a private key (like in Figure 2
where the signature is f(p,t)) to prove the ownership of the Bitcoins. With the
message and the signature, it is possible to know that the owner of the private key
that generates the public key signed the message.

Signature is created from a function that receives as inputs the private key and the
message. There is no analytical form of the inverse of this function. Because of that,
the only way of finding an element x that this function f so that f(x) = y for a
given y is trying for random different values of x. So it is almost impossible to find
the private key from a message, a signature, and the public key. In Figure 2, the
checker is a f(t,s,a). So because of that, the owner of the private key can sign several
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Figure 3: Verification and signature of transactions

messages without anyone knows his private key.

Transactions (shown in Figure 3) are grouped in a block (shown in Figure 4). Each
block contains in its header the timestamp of its creation, the hash of the block,
the previous hash and a nonce. A nonce is an arbitrary value that the miner has to
choose to make the hash of the block respect some specific characteristics.

Each block has a size limit of 1 MB. Because of that, Bitcoin forms a blockchain (a
chain of blocks). Each block should be created at an average of 10 minutes. The
advantage of using a short average time of block creation is that it will propagate
transactions faster in the blockchain. But the disadvantage is that it increases the
probability of creating orphan blocks. To make the blockchain tamper-proof (nobody
can alter an existing block), there is a concept called proof of work in Bitcoin. To
create a new block, the creator (called the miner) has to choose a random value as
nonce that makes the hash of the block less than a certain value. This value is chosen
in a way that each block should be generated on 10 minutes on average. If the value
is for example 100 and the total possibilities of results are 10.000 (codomain), the
probability of finding x so that hash(x) 6 100 is 1% 100/10.000. Because of that,
in this example, the miner has to calculate on average 100 hashes before finding the
right one.

If the value is too low, miners will take more time to find a nonce that makes the
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Figure 4: Blockchain

hash block less than it. If it is too high, it will be easier to find a nonce and they
will find it faster.

When two different blocks are created in nearly the same time, there are two valid
blockchains. It is because the last block in both blockchains are valid but different.
Because of this problem, in the Bitcoin protocol, the largest chain is always the right
chain. While two valid chains have the same size, it is not possible to know which
chain is the right. This situation is called fork and when it happens, it is necessary
to wait to see in which chain the new block will be.

If miners have more than 50% of the hash rates of Bitcoin, they can do an attack
called a 51% attack. It happens when some miner, with more power than all network,
mine secretly the blocks. So if the main network has 50 blocks, the miner could
produce hidden blocks from 46 to 55 and he would have 10 hidden blocks from the
network. When he shows their hidden blocks, his chain becomes the valid chain,
because it is bigger. So all transactions from the previous blockchain from 46 to
50 blocks become invalid. Because of that, when someone makes a big transaction
in the blockchain, it is a good idea to wait more time. So it is becoming harder
and harder to make a 51% with more time. Bitcoin has the highest market value
nowadays, so attacking the Bitcoin network is very expensive. Nowadays, this kind
of attack is more common in new altcoins.

Ledger is a software that tracks how much money each address can spend. It can be
known when calculating the sum amount of all unspent output transactions destined
for each address.

The UTXO model used in Bitcoin and the account model used in Ethereum are the
two most used kinds of data structures to model account records and savings states.
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Figure 5: UTXO transactions

In the account model, it is saved the address and the balance of each address. For
example, the data structure will look like this [(0xabc01, 1.01), (0xabc02, 2.02)].
So the address 0xabc01 has 1.01a of balance and the address 0xabc02 has 2.02 of
balance. In this way, it is possible to easily know how much balance each address
has, but it is not possible to know how they got in this state.

In the UTXO model (shown in Figure 5), each transaction is saved in the transaction
tree. Every transaction is composed of multiples inputs and multiples outputs. But
all inputs have to come from outputs that have never been spent before.

Because of that, in the UTXO model, it is easy to make a new transaction from the
previous one, but it is harder to know how much each one has. To know how much
someone has, it is necessary to calculate the sum of all unspent transaction outputs
destined for his addresses.
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In the account model, there could be one kind of vulnerability that is less probable
to happen in the UTXO model. Changing both addresses balances is not an atomic
operation. Because there are two instructions, subtracting the balance of the sender
and incrementing the balance of the receiver. If something bad happens between
these two instructions, the final state will become an invalid state.

For example:
bobBalance -= 1
Intermediary State
aliceBalance += 1

In the account model, it is straight forward to know how much balance each address
has. In the UTXO model, this calculation is made off-chain. It can be a good thing
because each user has more privacy.

2.3 Ethereum

Ethereum differs from Bitcoin in having an EVM to run script code. EVM is a
stack machine and Turing complete (Turing, 1936) while Bitcoin Script is not (it is
impossible to do loops and recursion in Bitcoin).

Transactions in Bitcoin are all stored in the blockchain. In Ethereum, just the hash
of it is stored in it. So it is saved in the off-chain database. Because of that, it is
possible to save more information in Ethereum Blockchain.

Contracts in the blockchain are the script program that comes with the transaction.
In Bitcoin, the creator of the contract has to pay the amount proportional to its
size. In Ethereum, it is different. Each smart contract in Ethereum is made by a
series of instructions. Each instruction consumes different the computational effort.
Because of that, in Ethereum, there is a concept of gas, that measure how much
computational effort each instruction needs. So in each smart contract, it is well
know how much computational effort will be necessary to run it and it is measured
in gas. Because computational effort of each node in the Ethereum network is a
scarce resource, to execute the smart contract, it is necessary to pay an amount in
ether for each gas to the miner run it. Smart contracts that pay more ether per
gas run first because the miner will want to have the best profit and they will pick
them. If the amount of ether per gas paid is not high enough, the contract will not
be executed, because some other contracts pay more that will be executed instead
of this one.

Because Ethereum has its EVM with more instructions than Bitcoin and it is Turing
Complete, it is considered less secure. Ethereum has its high-level programming
language called Solidity that looks like JavaScript.

29



A Simplified version of Bitcoin, implemented in Agda Guilherme H. A. Silva

3 Development

3.1 Crypto Functions

The first thing that we define is the crypto functions that will be needed to make
the cryptocurrency. Messages can be defined in multiple ways, one array of bytes,
one string or a natural number. Messages in this context means some data.

A private key is a number, a secret that someone has. In Bitcoin, the private key is
a 256-bit number. A private key is used to signed messages.

The public key is generated from a private key. But getting the private key from a
public key is difficult. To verify who signed a message with a private key, he has to
show the public key.

Hash is an injection function (the probability of two functions having the same hash
is very low). The function is used from a big domain to a small domain. For example,
a hash of the big file (some GBs) is an integer of just some bytes. It is very useful
to prove for example that 2 files are equal. If the hash of two files are equal, the
probability of these files being equal is high. It is used in torrents clients, so it is
safe to download a program to untrusted peers, just have to verify if the hash of the
file is equal to the hash of the file wanted.

These functions can be defined, but it is not the purpose of this thesis. So they will
be just postulates.

postulate _priv≡pub_ : PrivateKey → PublicKey → Set
postulate publicKey2Address : PublicKey → Address
postulate Signed : Msg → PublicKey → Signature → Set
postulate Signed? : (msg : Msg) (pk : PublicKey)

(sig : Signature) → Dec $ Signed msg pk sig
postulate hashMsg : Msg → Hashed
postulate hash-inj : ∀ m n → hashMsg m ≡ hashMsg n

→ m ≡ n

record SignedWithSigPbk (msg : Msg)(address : Address)
: Set where
field
publicKey : PublicKey
pbkCorrect : publicKey2Address publicKey ≡ address
signature : Signature
signed : Signed msg publicKey signature
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3.2 Transactions

3.2.1 Definitions

In Bitcoin, there are some transactions. In each transaction, there are multiple in-
puts and outputs. Each input is named TXFieldWithId. The input of one transac-
tion is the output of another transaction. Firsts outputs are generated from coinbase
transaction (created by the miner). Each block has just one of this transaction.

data VectorOutput : (time : Time) (size : Nat) (amount : Amount) → Set where
fstEl : ∀ {time : Time}
(tx : TXFieldWithId)
(sameId : TXFieldWithId.time tx ≡ time)
(elStart : TXFieldWithId.position tx ≡ zero)
→ VectorOutput time 1 (TXFieldWithId.amount tx)

cons : ∀ {time : Time} {size : Nat} {amount : Amount}
(listOutput : VectorOutput time size amount)
(tx : TXFieldWithId)
(sameId : TXFieldWithId.time tx ≡ time)
(elStart : TXFieldWithId.position tx ≡ size)
→ VectorOutput time (suc size) (amount + TXFieldWithId.amount tx)

Vector output is the vector of outputs transactions. It is a non-empty vector, because
it already starts with one element fstStart or it is an union from one transaction
with another vector. In its representation, it is possible to know in what time it was
created (time is the position of they in all transactions), what is his size (quantity
of outputs fields) and the total amount spent in this transaction,

elStart is a proof that the position of TXFieldWithId is the last one, because its
position in the vector is the same as the last position (size) of the vector. It is used
after to specify which input is in the transaction.

record TXSigned
{time : Time}
{outSize : Nat}
{outAmount : Amount}
(inputs : List TXFieldWithId)
(outputs : VectorOutput time outSize outAmount) : Set where
constructor txsig
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field
nonEmpty : NonNil inputs
signed : All
(ń input →
SignedWithSigPbk (txEls→MsgVecOut input outputs)

(TXFieldWithId.address input))
inputs

in≥out : txFieldList→TotalAmount inputs ≥ outAmount

A signed transaction is composed of a non-empty list of inputs and outputs. For each
input, there is a signature that confirms that he accepted every output in the list of
outputs. And in the transaction, there is proof (in ≥ out) that the total amount of
money in all inputs is bigger than the total amount of outputs. The remainder will
be used by the miner.

3.2.2 Raw Transaction

Raw transactions are transactions without any explicit dependent type. Here the
definition of raw signed transaction:

record RawTXSigned : Set where
field
inputs : List TXFieldWithId
outputs : List TXFieldWithId
txSig : TXSignedRawOutput inputs outputs

Raw signed transactions are a record with inputs, outputs and the signature of inputs
and outputs.

The definition of some important types:

data PublicKey : Set where
nat : Nat → PublicKey

data Address : Set where
nat : Nat → Address

data PrivateKey : Set where
nat : Nat → PrivateKey

data Signature : Set where
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nat : Nat → Signature

data Hashed : Set where
nat : Nat → Hashed

data Msg : Set where
nat : (n : Nat) → Msg
_+msg_ : (m n : Msg) → Msg

The definition of Raw Input :

record RawInput : Set where
field
time : Time
position : Nat
amount : Amount
msg : Msg
signature : Signature
publicKey : PublicKey

In each input, it is necessary to know the time, the position of it in the transaction,
the amount spent, its message, the signature, and its public key. The signature is
the signature of the message. And the message is usually related to the amount
spent in each output.

The definition of raw transaction:

record RawTransaction : Set where
field
inputs : List RawInput
outputs : List TXField

It is all inputs and all outputs.

The definition of Raw TX :

data RawTX : Set where
coinbase : (tx : RawTXCoinbase) → RawTX
normalTX : (tx : RawTransaction) → RawTX

The definition of raw transaction coinbase:
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record RawTXCoinbase : Set where
field
outputs : List TXFieldWithId

The definition of raw Vector Output :

record RawVecOutput (outputs : List TXFieldWithId) : Set where
field
time : Time
outSize : Nat
amount : Amount
vecOut : VectorOutput time outSize amount
proof : VectorOutput→List vecOut ≡ outputs

It has the time, its size, the total amount, the vector output and proof that this
vector is the same as the list of outputs of this type.

The definition of the record that every input transaction is signed in a given time:

record TXSigAll (time : Time) (allInputs : List TXFieldWithId) : Set where
field
outSize : Nat
sub : SubList allInputs
amount : Amount
outputs : VectorOutput time outSize amount
signed : TXSigned (sub→list sub) outputs

It has the size of vector output, the sublist of all inputs, the total amount, the vector
output and a proof that all sublists of inputs are signed.

rawTXSigned → TXSigAll returns a signed transaction of all inputs in a given
time if rawTXSigned has valid signatures for all these inputs:

rawTXSigned→TXSigAll : (time : Time) (allInputs : List TXFieldWithId)
(rawTXSigned : RawTXSigned) → Maybe $ TXSigAll time allInputs

rawTXSigned→TXSigAll time allInputs
record { outputs = outputs ; txSig = txSig }
with listTXField→VecOut outputs

... | nothing = nothing

... | just record { outSize = outSize ; vecOut = vecOut ;
proof = proofVecOut } with list→subProof allInputs (txSigInput txSig)

... | nothing = nothing
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... | just record { sub = sub ; proof = proofSub }
with vecOutTime vecOut == time

... | no _ = nothing

... | yes refl = just $ record
{ outSize = outSize ; sub = sub ; outputs = vecOut ; signed = txSigRes }
where
txSigRes : TXSigned (sub→list sub) vecOut
txSigRes rewrite proofSub = txAux
where
txAux : TXSigned (txSigInput txSig) vecOut
txAux rewrite proofVecOut = TXRaw→TXSig vecOut proofVecOut txSig

It has to validate first that the list of outputs is a valid Vector Output. Second, it
validates if the signature of the inputs are valid with the raw signed transaction. In
the last case, it validates if the time of the vector output is equal of the time of this
transaction. If all conditions match, it returns a proven signed transaction. If not,
it returns nothing.

This function transforms a raw transaction into a signed transaction:

TXRaw→TXSig : {inputs : List TXFieldWithId}
{outputs : List TXFieldWithId}
{time : Time}
{outSize : Nat}
{outAmount : Amount}
(vecOut : VectorOutput time outSize outAmount)
(out≡vec : VectorOutput→List vecOut ≡ outputs)
(txSig : TXSignedRawOutput inputs outputs)
→ TXSigned inputs vecOut

TXRaw→TXSig {inputs} {outputs} {_} {_} {outAmount} vecOut out≡vec
record { nonEmpty = (nonEmptyInp , nonNilOutputs) ;
signed = signed ; in≥out = in≥out } =

record { nonEmpty = nonEmptyInp ;
signed = allSigned signed ; in≥out = in≥outProof }

where
vecOut≡ListAmount :
{outAmount : Amount}
{time : Time}
{outSize : Nat}
(outputs : List TXFieldWithId)
(vecOut : VectorOutput time outSize outAmount)
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(out≡vec : VectorOutput→List vecOut ≡ outputs)
→ outAmount ≡ txFieldList→TotalAmount outputs

vecOut≡ListAmount [] (fstEl tx sameId elStart) ()
vecOut≡ListAmount [] (cons vecOut tx sameId elStart) ()
vecOut≡ListAmount _
(fstEl record { time = time ; position = position ; amount = zero ;
address = address } sameId elStart) refl = refl

vecOut≡ListAmount _ (fstEl record { time = time ;
position = position ; amount = (suc amount) ;
address = address } sameId elStart) refl = refl

vecOut≡ListAmount _ (cons vecOut tx sameId elStart) refl =
let vecProof = vecOut≡ListAmount (VectorOutput→List vecOut) vecOut refl
in cong (ń x → x + TXFieldWithId.amount tx) vecProof

in≥outProof : txFieldList→TotalAmount inputs ≥ outAmount
in≥outProof rewrite vecOut≡ListAmount outputs vecOut out≡vec = in≥out

sameMessage :
{outAmount : Amount}
{time : Time}
{outSize : Nat}
(outputs : List TXFieldWithId)
(input : TXFieldWithId)
(nonNilOut : NonNil outputs)
(vecOut : VectorOutput time outSize outAmount)
(out≡vec : VectorOutput→List vecOut ≡ outputs)
→ txEls→Msg input outputs (nonEmptyInp , nonNilOut) ≡

txEls→MsgVecOut input vecOut
sameMessage _ _ outNotNil (fstEl tx sameId elStart) refl = refl
sameMessage _ _ outNotNil (cons (fstEl tx1 sameId1 elStart1)
tx sameId elStart) refl = refl

sameMessage _ input unit (cons (cons vecOut tx2 sameId2 elStart2)
tx1 sameId1 elStart1) refl =
let msgRest = sameMessage _ input unit (cons vecOut tx2 sameId2 elStart2) refl
in cong (ń x → TX→Msg (removeId tx1) +msg x) msgRest

sigPub : {input : TXFieldWithId}
(sign : SignedWithSigPbk

(txEls→Msg input outputs (nonEmptyInp , nonNilOutputs))
(TXFieldWithId.address input))
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→ SignedWithSigPbk (txEls→MsgVecOut input vecOut)
(TXFieldWithId.address input)

sigPub {input} sign =
let msgEq = sameMessage outputs input nonNilOutputs vecOut out≡vec
in transport (ń msg → SignedWithSigPbk msg

(TXFieldWithId.address input)) msgEq sign

allSigned : {inputs : List TXFieldWithId}
(allSig : All

(ń input →
SignedWithSigPbk
(txEls→Msg input outputs (nonEmptyInp , nonNilOutputs))
(TXFieldWithId.address input)) inputs)

→ All
(ń input →
SignedWithSigPbk (txEls→MsgVecOut input vecOut)
(TXFieldWithId.address input))
inputs

allSigned {[]} allSig = []
allSigned {input :: inputs} (sig :: allSig) = (sigPub sig) :: (allSigned allSig)

The function vecOut ≡ ListAmount returns a proof that the vector output is equal
to the total amount of the list of transactions. It is impossible that the vector output
is equal to an empty list. In case that the list has just one element, it just has to
return refl. The another case, it is done recursively.

The proof that the amount of input transaction is greater than the amount of output
is just a rewrite from the previous proof (vecOut ≡ ListAmountoutputsvecOutout ≡
vec).

The function sameMessage returns a proof that the message of raw transaction is
the same as the message of the vector output. In case that vector output has just
size one or two, it is a trivial case. The other cases are doing it recursively.

sigPub is another function that returns a proof that an input message is signed. It
validates it with its public key.

The last function returns a proof that every input was signed. It is done in a recursive
way using the function sigPub.

This is the function that transforms a list of transactions into a possible vector
output :
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listTXField→VecOut : (txs : List TXFieldWithId) → Maybe $ RawVecOutput txs
listTXField→VecOut [] = nothing
listTXField→VecOut (tx :: txs) with listTXField→VecOut txs
... | just vouts = addElementRawVec tx txs vouts
where
addElementInVectorOut : {time : Time} {outSize : Nat} {amount : Amount}
(tx : TXFieldWithId)
(vecOut : VectorOutput time outSize amount)
→ Maybe $ VectorOutput time (suc outSize)

(amount + TXFieldWithId.amount tx)
addElementInVectorOut {time} {outSize} tx vecOut
with TXFieldWithId.time tx == time

... | no ¬p = nothing

... | yes refl with TXFieldWithId.position tx == outSize

... | no ¬p = nothing

... | yes refl = just $ cons vecOut tx refl refl

addElementRawVec : (tx : TXFieldWithId)
(outs : List TXFieldWithId) (vecOut : RawVecOutput outs)
→ Maybe $ RawVecOutput (tx :: outs)

addElementRawVec tx outs record { time = time ; outSize = outSize ;
vecOut = vecOut ; proof = proof }

with addElementInVectorOut tx vecOut
... | nothing = nothing
... | just vec with TXFieldWithId.time tx == time
... | no _ = nothing
... | yes refl with TXFieldWithId.position tx == outSize
... | no _ = nothing
... | yes refl = just $ record { time = time ; outSize = suc outSize
; vecOut = cons vecOut tx refl refl ; proof = cong (_::_ tx) proof }

... | nothing with txs == []

... | no _ = nothing

... | yes p rewrite p = createVecOutsize tx

The list has to be at least with a size one. Because the vector output can not be
empty. To add one element into the vector, it has to verify if the time is equal to the
first time. Another verification is that the informed position in the vector is right. If
all validations are right, it returns the vector output. If it is not, it returns nothing.

The definition of the function that transform a raw transaction into a raw signed
transaction:
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raw→TXSigned : ∀ (time : Time) (ftx : RawTransaction)
→ Maybe RawTXSigned

raw→TXSigned time record { inputs = inputs ; outputs = outputs }
with NonNil? inputs

... | no _ = nothing

... | yes nonNilInp with NonNil? outputs

... | no _ = nothing

... | yes nonNilOut = ans
where
inpsField : List TXFieldWithId
inpsField = map raw→TXField inputs

outsField : List TXFieldWithId
outsField = addId zero time outputs

nonNilMap : ∀ {A B : Set} {f : A → B} (lista : List A)
→ NonNil lista → NonNil (map f lista)

nonNilMap [] ()
nonNilMap (_ :: _) nla = unit

nonNilImpTX : NonNil inpsField
nonNilImpTX = nonNilMap inputs nonNilInp

nonNilAddId : {time : Time} (outputs : List TXField)
(nonNilOut : NonNil outputs)
→ NonNil (addId zero time outputs)

nonNilAddId [] ()
nonNilAddId (_ :: outputs) nonNil = nonNil

nonNilOutTX : NonNil outsField
nonNilOutTX = nonNilAddId outputs nonNilOut

nonEmpty : NonNil inpsField × NonNil outsField
nonEmpty = nonNilImpTX , nonNilOutTX

All?Signed : (inputs : List RawInput) →
Maybe (All (ń input → SignedWithSigPbk
(txEls→Msg input outsField nonEmpty)
(TXFieldWithId.address input)) (map raw→TXField inputs))

All?Signed [] = just []
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All?Signed (input :: inputs)
with Signed? (txEls→Msg (raw→TXField input) outsField nonEmpty)
(RawInput.publicKey input) (RawInput.signature input)

... | no _ = nothing

... | yes signed with All?Signed inputs

... | nothing = nothing

... | just allInputs = just $ (record
{ publicKey = RawInput.publicKey input
; pbkCorrect = refl
; signature = RawInput.signature input
; signed = signed
}) :: allInputs

in≥out : Dec $ txFieldList→TotalAmount inpsField ≥
txFieldList→TotalAmount outsField

in≥out = txFieldList→TotalAmount inpsField ≥?p
txFieldList→TotalAmount outsField

ans : Maybe RawTXSigned
ans with All?Signed inputs
... | nothing = nothing
... | just signed with in≥out
... | no _ = nothing
... | yes in>out = just $ record { inputs = inpsField ; outputs = outsField ;
txSig = record { nonEmpty = nonEmpty ; signed = signed ; in≥out = in>out } }

The first validation that the function does is verifying that the outputs are not
empty. Another validation is verifying if the amount spent on inputs is greater than
the amount of the outputs. The function Signed?, defined in the crypto library,
validates if the message was signed with the input. After, it validates if all inputs
are signed. If all validations are right, it returns the raw transaction signed. If it is
not, it returns nothing.
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3.3 Transaction Tree

3.3.1 Definition

The transaction tree is one of the most important data structures in Bitcoin. In
every new transaction, the UTXOs used as input is removed from the transaction
tree.

mutual
data TXTree : (time : Time) (block : Nat)
(outputs : List TXFieldWithId)
(totalFees : Amount)
(qtTransactions : tQtTxs) → Set where

genesisTree : TXTree (nat zero) zero [] zero zero
txtree :
{block : Nat} {time : Time}
{outSize : Nat} {amount : Amount}
{inputs : List TXFieldWithId}
{outputTX : VectorOutput time outSize amount}
{totalFees : Amount} {qtTransactions : tQtTxs}
(tree : TXTree time block inputs totalFees qtTransactions)
(tx : TX {time} {block} {inputs} {outSize} tree outputTX)
(proofLessQtTX :

Either
(IsTrue (lessNat (finToNat qtTransactions) totalQtSub1))
(isCoinbase tx))

→ TXTree (sucTime time)
(nextBlock tx)
(inputsTX tx ++ VectorOutput→List outputTX)
(incFees tx) (incQtTx tx proofLessQtTX)

In this implementation, time is the number of transactions in TXTree. Block is
related to which block the transaction tree is. After every new coinbase transaction
(the miner transaction), the block size (blocksize) increment in one quantity. Total
fees (totalFees) are how much the miner will have in fee of transactions if he makes
a block with these transactions. Quantity of transactions (qtTransaction) is how
many transactions there are in the current block. The type is tQtTxs instead of a
natural number because, in this implementation, each block can have a maximum
number of transactions. In Bitcoin, it is different, each block has a limit size in space
of 1 MB.
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Genesis tree is the first case. It is when the cryptocurrency was created. txtree is
created from another tree. proofLessQtTX is a proof that the last transaction tree
has its block size less than the maximum block size minus one or it is a coinbase
transaction. It is because it is necessary to verify the size of the last txtree so it will
not have the size greater than the maximum.

data TX {time : Time} {block : Nat} {inputs : List TXFieldWithId}
{outSize : Nat} {outAmount : Amount}
{totalFees : Nat} {qtTransactions : tQtTxs}

: (tr : TXTree time block inputs totalFees qtTransactions)
(outputs : VectorOutput time outSize outAmount) → Set where

normalTX :
(tr : TXTree time block inputs totalFees qtTransactions)
(SubInputs : SubList inputs)
(outputs : VectorOutput time outSize outAmount)
(txSigned : TXSigned (sub→list SubInputs) outputs)
→ TX tr outputs

coinbase :
(tr : TXTree time block inputs totalFees qtTransactions)
(outputs : VectorOutput time outSize outAmount)
(pAmountFee : outAmount out≡Fee totalFees +RewardBlock block)
→ TX tr outputs

TX is related to the transaction done in the cryptocurrency. There are two kinds
of transactions. Coinbase transaction is the transaction done by the miner. In
coinbase, they have just outputs and do not have any input. pAmountFee is proof
that the output of the coinbase transaction is equal to the total fees plus a block
reward.

Another kind of transaction is the normalTX, a regular transaction. SubInputs are a
sub-list of all unspent transaction outputs of the previous transaction tree. Outputs
are the new unspent transaction from this transaction. So who receives the amount
from this transaction can spend it after. TxSigned is the signature that proves that
every owner of each input approve this transaction. In TxSigned, there is proof that
the output amount is greater than the input amount too.

isCoinbase : ∀ {block : Nat} {time : Time}
{inputs : List TXFieldWithId}
{outSize : Nat} {amount : Amount}
{totalFees : Nat} {qtTransactions : tQtTxs}
{tr : TXTree time block inputs totalFees qtTransactions}
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{outputs : VectorOutput time outSize amount}
(tx : TX {time} {block} {inputs} {outSize} tr outputs)
→ Set

isCoinbase (normalTX _ _ _ _) = ⊥
isCoinbase (coinbase _ _ _) = >

This function just returns trivial type if coinbase and bot type if not.

nextBlock : ∀ {block : Nat} {time : Time}
{inputs : List TXFieldWithId}
{outSize : Nat} {amount : Amount}
{totalFees : Nat} {qtTransactions : tQtTxs}
{tr : TXTree time block inputs totalFees qtTransactions}
{outputs : VectorOutput time outSize amount}
(tx : TX {time} {block} {inputs} {outSize} tr outputs)
→ Nat

nextBlock (normalTX genesisTree _ _ _) = zero
nextBlock {block} (normalTX (txtree _ (normalTX _ _ _ _) _) _ _ _) = block
nextBlock {block} (normalTX (txtree _ (coinbase _ _ _) _) _ _ _) = suc block
nextBlock (coinbase genesisTree _ _) = zero
nextBlock {block} (coinbase (txtree _ (normalTX _ _ _ _) _) _ _) = block
nextBlock {block} (coinbase (txtree _ (coinbase _ _ _) _) _ _) = suc block

If it is a normal transaction, the block continues the same. If it is a coinbase
transaction, the next transaction tree will be in a new block.

incQtTx : ∀ {qtTransactions : tQtTxs}
{block : Nat} {time : Time}
{inputs : List TXFieldWithId}
{outSize : Nat} {amount : Amount}
{totalFees : Nat}
{tr : TXTree time block inputs totalFees qtTransactions}
{outputs : VectorOutput time outSize amount}
(tx : TX {time} {block} {inputs} {outSize} tr outputs)
(proofLessQtTX :
Either
(IsTrue (lessNat (finToNat qtTransactions) totalQtSub1))
(isCoinbase tx))

→ tQtTxs
incQtTx {qt} (normalTX _ _ _ _) (left pLess) =
natToFin (suc (finToNat qt)) {{pLess}}
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incQtTx {qt} (normalTX _ _ _ _) (right ())
incQtTx (coinbase _ _ _) _ = zero

This function is to increment the number of transactions in the block. It has to
receive proof that the quantity of transaction that was before this new transaction
was less than then the maximum quantity of transactions allowed. So it is guaranteed
that the number of transactions will never be greater than the maximum allowed.
If it is a coinbase transaction, it will be a new block. So the number of transactions
starts being zero.

incFees : ∀ {block : Nat} {time : Time}
{inputs : List TXFieldWithId}
{outSize : Nat} {amount : Amount}
{totalFees : Amount} {qtTransactions : tQtTxs}
{tr : TXTree time block inputs totalFees qtTransactions}
{outputs : VectorOutput time outSize amount}
(tx : TX {time} {block} {inputs} {outSize} tr outputs)
→ Amount

incFees {_} {_} {_} {_} {amount} {totalFees}
(normalTX _ SubInputs _ (txsig _ _ in≥out)) =
txFieldList→TotalAmount (sub→list SubInputs)
- amount p≥ in≥out
+ totalFees

incFees (coinbase tr outputs _) = zero

IncFees is a function that increments how much fee the miner will receive. If it is
a coinbase transaction, the fee will be received by the miner, so the next miner will
not receive this previous fee. Because of that, the new fee will start from zero. If it is
a normal transaction, the newest fee will be the amount of input of the transaction
minus the output of this transaction plus the last fee of previous transactions.

_out≡Fee_+RewardBlock_ : (amount : Amount)
(totalFees : Amount)
(block : Nat) → Set

amount out≡Fee totalFees +RewardBlock block =
amount ≡ totalFees + blockReward block

_out ≡ Fee_ + RewardBlock_is a proof that the amount of output transactions
is equal to total fees of other transactions plus the block reward.
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3.3.2 Raw Transaction Tree

The raw transaction tree is the tree without the explicit types. Here, the definition:

record RawTXTree : Set where
field
time : Time
block : Nat
outputs : List TXFieldWithId
totalFees : Amount
qtTransactions : tQtTxs
txTree : TXTree time block outputs totalFees qtTransactions

A good advantage of raw data types is that they do not use dependent types. They
are made from primitive types like lists, integers, boolean, strings. So it become
easier to serialize and deserialize them. addTransactionTree is a function that adds
a transaction to a transaction tree. If this transaction is compatible with the trans-
action tree, it returns a new transaction tree. If it is not compatible, it returns
nothing. A better solution is a proof that this transaction is invalid with the trans-
action tree instead of nothing. But defining what is an invalid transaction can be
tricky, because it has to derive absurd from a valid transaction and all other inputs
that made this transaction.

addTransactionTree : (txTree : RawTXTree) (tx : RawTX) → Maybe RawTXTree
addTransactionTree record { time = time ; block = block ; outputs = outputs ;
qtTransactions = qtTransactions ; totalFees = totalFees ; txTree = txTree }
(coinbase record { outputs = outputsTX }) with listTXField→VecOut outputsTX

... | nothing = nothing

... | just record { time = timeOut ; outSize = outSize ; vecOut = vecOut }
with vecOut→Amount vecOut == totalFees + blockReward block

... | no _ = nothing

... | yes eqBlockReward
with time == timeOut

... | no _ = nothing

... | yes refl = just $
record { time = sucTime time ;
block = nextBlock (coinbase txTree vecOut eqBlockReward) ;
outputs = outputs ++ VectorOutput→List vecOut ;
txTree = txtree txTree tx (right unit) }
where
tx : TX txTree vecOut
tx = coinbase txTree vecOut eqBlockReward
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There are two types of transactions. The first one is when the transaction is a
coinbase transaction. The function tries first to transform a list of TXField into
VecOut. If it can not transforms, it returns nothing. If it can, it validates if the
amount of vector output is equal to total fees plus the block reward. After, it
validates if the time of the transaction is equal to the time of the transaction tree.
In the end, it adds the outputs of the transaction to the vector of outputs. Because
it is a coinbase transaction, there are no inputs to be removed.

addTransactionTree record { time = time ; block = block ; outputs = outputs ;
qtTransactions = qtTransactions ; txTree = txTree }
(normalTX record { inputs = inputsTX ; outputs = outputsTX })
with dec< (finToNat qtTransactions) totalQtSub1

... | no _ = nothing

... | yes pLess
with raw→TXSigned time record { inputs = inputsTX ; outputs = outputsTX }

... | nothing = nothing

... | just txSig with rawTXSigned→TXSigAll time outputs txSig

... | nothing = nothing

... | just record { outSize = outSize ; sub = sub ;
outputs = outs ; signed = signed } =

just $ record { time = sucTime time ;
block = nextBlock (normalTX txTree sub outs signed) ;

outputs = list-sub sub ++ VectorOutput→List outs ;
txTree = txtree txTree (normalTX txTree sub outs signed) (left pLess) }

The second case is when the transaction is regular, looks like the same. First, the
function validates if the quantity of transactions is less than the maximum allowed.
Second, it validates if this transaction is a valid signed transaction. If all these
conditions are true, it returns a new transaction tree with news outputs equal to the
outputs of this transaction plus the outputs of the last transaction tree minus the
inputs. In case of an invalid transaction, the function returns nothing.

3.3.3 Proofs

One of the important proofs is that each output of the outputs transaction is distinct.
This is very important because it guarantees that each input in the transaction could
be just related to just one unspent output. This characteristic could be in the type
of transaction tree, but it is proven outside of it.

First, it is necessary to define what is a distinct union of two distinct lists:

unionDistinct : {A : Set} {la lb : List A} (da : Distinct la) (db : Distinct lb)
(twoDist : twoListDistinct la lb) → Distinct $ la ++ lb
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unionDistinct {_} {[]} {lb} da db twoDist = db
unionDistinct {_} {_} {lb} (cons x da isDistXla) db (isDistXlb , distLaLb) =
cons x (unionDistinct da db distLaLb) (isDistUnion x isDistXla isDistXlb)

The union of distinct lists makes a new distinct list if both are distinct to each other.

Now, to prove that transactions outputs are a distinct list:

uniqueOutputs : {time : Time}
{block : Nat}
{outputs : List TXFieldWithId}
{totalFees : Amount}
{qtTransactions : tQtTxs}
(txTree : TXTree time block outputs totalFees qtTransactions)
→ Distinct outputs

uniqueOutputs genesisTree = []
uniqueOutputs (txtree {block} {time} {outSize} {inputs} {_} {vecOut} tree tx _) =
unionDistinct {_} {inputsTX tx} {VectorOutput→List vecOut}
(distInputs tx) (vecOutDist vecOut)
(allDistincts (inputsTXTimeLess tx) (allVecOutSameTime vecOut))

In the first case, the transaction tree is a genesis tree without any outputs. So an
empty list is a distinct list. In the second case, the outputs are the union of inputs
of the transaction with the outputs of vector output. So, it is necessary to prove
that inputs of the transaction are distinct, that elements of vector output are also
distinct and that both lists are distinct to each other.

distInputs : {time : Time}
{block : Nat}
{inputs : List TXFieldWithId}
{outSize : Nat}
{totalFees : Amount}
{qtTransactions : tQtTxs}
{outAmount : Amount}
{tree : TXTree time block inputs totalFees qtTransactions}
{outVec : VectorOutput time outSize outAmount}
(tx : TX tree outVec)
→ Distinct $ inputsTX tx

distInputs (normalTX genesisTree [] outputs txSigned) = []
distInputs (normalTX (txtree {_} {_} {_} {_} {_} {vecOut} tr tx _)
SubInputs outputs txSigned) =
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distList→distSub {_} {_} {SubInputs} (unionDistinct {_} {inputsTX tx}
(distInputs tx) (vecOutDist vecOut)
(allDistincts (inputsTXTimeLess tx) (allVecOutSameTime vecOut)))

distInputs (coinbase genesisTree outVec _) = []
distInputs (coinbase
(txtree {_} {_} {_} {_} {_} {vecOut} tr tx _) outVec _) =
unionDistinct {_} {inputsTX tx} (distInputs tx)
(vecOutDist vecOut)
(allDistincts (inputsTXTimeLess tx) (allVecOutSameTime vecOut) )

There are some cases to prove that inputs are distinct. First, if it is a regular
transaction or if it is a coinbase transaction. Second, if the transaction tree of this
transaction is a genesis tree or if it is a regular tree.

If the transaction tree of the transaction is a genesis tree (the first tree), the number
of inputs is zero. So they are distinct.

In other cases, it does the same thing as proof of unique outputs. The only difference
is that it also does a recursive proof. It assumes that the transaction of the last
transaction tree is also distinct.

allDistincts : {time : Time} {vec< vec≡ : List TXFieldWithId}
(all< : All (ń tx → tx out<time time) vec<)
(all≡ : All (ń tx → TXFieldWithId.time tx ≡ time) vec≡)
→ twoListDistinct vec< vec≡

allDistincts {time} {.[]} {vec≡} [] all≡ = unit
allDistincts {time} {(x :: _)} {vec≡} (p< :: all<) all≡ =
distinctLess all≡ , allDistincts all< all≡
where
sucRemove : ∀ {m n : Nat} (suc≡ : _≡_ {_} {Nat}
(suc m) (suc n)) → m ≡ n

sucRemove refl = refl

¬n≡suck+n : (k n : Nat) → ¬ (n ≡ suc k + n)
¬n≡suck+n k zero ()
¬n≡suck+n k (suc n) eqs = ¬n≡suck+n k n let eq = sucRemove eqs in
trans eq (add-suc-r k n)

¬n<n : {n : Nat} → ¬ (n < n)
¬n<n {n} (diff k eq) = ¬n≡suck+n k n eq

distinctLess : {vec≡ : List TXFieldWithId}
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(all≡ : All (ń tx → TXFieldWithId.time tx ≡ time) vec≡)
→ isDistinct x vec≡

distinctLess [] = unit
distinctLess (refl :: all≡) = (ń{ refl → ¬n<n p<}) , (distinctLess all≡)

Both are distinct to each other because all of the transactions of input has the
timeless then the time of the transaction. And because all of the outputs of the
current transaction has time equal to the current time of this transaction.

outputsTimeLess :
{time : Time}
{block : Nat}
{outputs : List TXFieldWithId}
{totalFees : Amount}
{qtTransactions : tQtTxs}
(txTree : TXTree time block outputs totalFees qtTransactions )
→ All (ń output → output out<time time) outputs

outputsTimeLess genesisTree = []
outputsTimeLess {_} {_} {_} {totalFees} {qtTransactions}
(txtree {block} {time} {amount} {outSize} {outputs} {outVec} txTree tx _) =
allJoin (inputsTX tx) (VectorOutput→List outVec)
(inputsTree→inputsTXtx tx $ outputsTimeLess txTree)
$ vecOutTimeLess outVec
where
vecOutTimeLess : {time : Time}
{outSize : Nat}
{amount : Amount}
(vecOut : VectorOutput time outSize amount)
→ All (ń output → output out<time (sucTime time))
(VectorOutput→List vecOut)

vecOutTimeLess (fstEl tx refl elStart) =
(diff zero (timeToNatSuc {TXFieldWithId.time tx})) :: []

vecOutTimeLess (cons {time} vecOut tx refl elStart) =
(diff zero (timeToNatSuc {time})) :: (vecOutTimeLess vecOut)

≤timeSuc : {t1 : TXFieldWithId} {t2 : Time} (pt : t1 out<time t2)
→ t1 out<time (sucTime t2)
≤timeSuc {txfieldid time position amount address} {t2}
(diff k eq) = diff (suc k) (trans (eqTimeNat {t2}) eqsuc)
where
eqsuc : _≡_ {_} {Nat} (suc (timeToNat t2))
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(suc (suc (k + timeToNat time)))
eqsuc = cong suc eq

eqTimeNat : {t2 : Time} → timeToNat (sucTime t2) ≡ suc (timeToNat t2)
eqTimeNat {nat zero} = refl
eqTimeNat {nat (suc x)} = refl

inputsTree→inputsTXtx : {inputs : List TXFieldWithId}
{totalFees : Amount}
{qtTransactions : Fin totalQt}
{tree : TXTree time block inputs totalFees qtTransactions}
(tx : TX tree outVec)
(allInps : All (ń output → output out<time time) inputs)
→ All (ń input → input out<time sucTime time) (inputsTX tx)

inputsTree→inputsTXtx {[]} (normalTX tr [] outVec txSigned) [] = []
inputsTree→inputsTXtx {[]} (coinbase tr outputs _) [] = []
inputsTree→inputsTXtx {input :: inputs} (normalTX tr (input ¬:: SubInputs)
outVec txSigned) (pt :: allInps) =
≤timeSuc {input} {time} pt :: allProofFG (ń y pf → ≤timeSuc {y} {time} pf)
(allList→allSub SubInputs allInps)

inputsTree→inputsTXtx {input :: inputs} (normalTX tr (input :: SubInputs)
outVec txSigned) (x :: allInps) =
allProofFG (ń y pf → ≤timeSuc {y} {time} pf)
(allList→allSub SubInputs allInps)

inputsTree→inputsTXtx {input :: inputs} (coinbase tr outVec _)
(pt :: allInps) = ≤timeSuc {input} {time} pt
:: allProofFG (ń y pf → ≤timeSuc {y} {time} pf) allInps

The proof that the time of the outputs is less than the current time of the transac-
tion is done recursively. It is both necessary to proof that inputs of tx and vector
output have both times less than the current time of this transaction. It is all done
recursively.
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3.4 Ledger

Ledger is necessary for users to send their coins or to know how much money they
have in total.

Here, the definition of how much money the user has in the last tree:

ledgerTree : (rawTXTree : RawTXTree) (addr : Address) → Amount
ledgerTree txTree = ledgerOut outputs
where open RawTXTree.RawTXTree txTree

The definition of ledgerOut :

ledgerOut : ∀ (outputs : List TXFieldWithId) (addr : Address)
→ Amount

ledgerOut [] addr = zero
ledgerOut (output :: outputs) addr with TXFieldWithId.address output == addr
... | yes _ = TXFieldWithId.amount output + ledgerOut outputs addr
... | no _ = ledgerOut outputs addr

If there is no output, it returns zero of the amount. If there is at least one output, it
verifies if the output address is the same as the address. If it is, it adds the amount
to the amount of the rest of the outputs. If it is not, it just returns the result of the
recursion of the rest of the outputs.

Here, the same code for list of outputs without id:

ledgerOutNoId : ∀ (outputs : List TXField) (addr : Address)
→ Amount

ledgerOutNoId [] addr = zero
ledgerOutNoId (output :: outputs) addr with TXField.address output == addr
... | yes _ = TXField.amount output + ledgerOutNoId outputs addr
... | no _ = ledgerOutNoId outputs addr
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3.5 Blockchain

3.5.1 Definition

This is how a block is defined in this work:

record Block
{block1 : Nat}
{time1 : Time}
{outputs1 : List TXFieldWithId}
{totalFees1 : Amount}
{qtTransactions1 : tQtTxs}
(txTree1 : TXTree time1 block1 outputs1 totalFees1 qtTransactions1)

{time2 : Time}
{outputs2 : List TXFieldWithId}
{totalFees2 : Amount}
{qtTransactions2 : tQtTxs}
(txTree2 : TXTree time2 block1 outputs2 totalFees2 qtTransactions2)
: Set where
constructor blockc
field
nxTree : nextTXTree txTree1 txTree2
fstBlock : firstTreesInBlock txTree1
sndBlockCoinbase : coinbaseTree txTree2

nextTXTree assures that the second transaction tree is from the first transaction
tree. firstTreesInBlock guarantees that the last transaction in the first transaction
tree is the first in the block. coinBaseTree assures that the last transaction in the
second transaction tree is a coinbase transaction.

Blockchain is a chain of valid blocks. Every new block must be a continuation of
the previous one. Here is the definition of the blockchain:

data Blockchain :
{block1 : Nat}
{time1 : Time}
{outputs1 : List TXFieldWithId}
{totalFees1 : Amount}
{qtTransactions1 : tQtTxs}
{txTree1 : TXTree time1 block1 outputs1 totalFees1 qtTransactions1}
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{time2 : Time}
{outputs2 : List TXFieldWithId}
{totalFees2 : Amount}
{qtTransactions2 : tQtTxs}
{txTree2 : TXTree time2 block1 outputs2 totalFees2 qtTransactions2}
(block : Block txTree1 txTree2)
→ Set where

fstBlock :
{block1 : Nat}
{time1 : Time}
{outputs1 : List TXFieldWithId}
{totalFees1 : Amount}
{qtTransactions1 : tQtTxs}
{txTree1 : TXTree time1 block1 outputs1 totalFees1 qtTransactions1}

{time2 : Time}
{outputs2 : List TXFieldWithId}
{totalFees2 : Amount}
{qtTransactions2 : tQtTxs}
{txTree2 : TXTree time2 block1 outputs2 totalFees2 qtTransactions2}
(block : Block txTree1 txTree2)
→ Blockchain block

addBlock :
{block-p1 : Nat}
{time-p1 : Time}
{outputs-p1 : List TXFieldWithId}
{totalFees-p1 : Amount}
{qtTransactions-p1 : tQtTxs}
{txTree-p1 : TXTree time-p1 block-p1 outputs-p1 totalFees-p1 qtTransactions-p1}

{time-p2 : Time}
{outputs-p2 : List TXFieldWithId}
{totalFees-p2 : Amount}
{qtTransactions-p2 : tQtTxs}
{txTree-p2 : TXTree time-p2 block-p1 outputs-p2 totalFees-p2 qtTransactions-p2}
{block-p : Block txTree-p1 txTree-p2}
(blockchain : Blockchain block-p)

{outSize : Nat}
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{amount : Amount}
{outputTX : VectorOutput time-p2 outSize amount}
{tx : TX {time-p2} {block-p1} {outputs-p2} {outSize} txTree-p2 outputTX}
{proofLessQtTX :
Either
(IsTrue (lessNat (finToNat qtTransactions-p2) totalQtSub1))
(isCoinbase tx)}

{time2 : Time}
{outputs2 : List TXFieldWithId}
{totalFees2 : Amount}
{qtTransactions2 : tQtTxs}
{txTree2 : TXTree time2 (nextBlock tx) outputs2 totalFees2 qtTransactions2}
(block : Block (txtree txTree-p2 tx proofLessQtTX) txTree2)
→ Blockchain block

In the first case, blockchain just has one block, called fstBlock. In the second case,
the blockchain is an addition of a valid block from a previous blockchain.

3.5.2 Creation

In this section, there will be explanation of how blockchain is created from blocks
and how blocks are created from transaction trees. To create a blockchain, it is first
needed to create the last block. From the last block, it is possible to create all the
chain.

block→blockchain : ∀
{block1 time1 outputs1 totalFees1 qtTransactions1}
{txTree1 : TXTree time1 block1 outputs1 totalFees1 qtTransactions1}
{time2 outputs2 totalFees2 qtTransactions2}
{txTree2 : TXTree time2 block1 outputs2 totalFees2 qtTransactions2}
(block : Block txTree1 txTree2)
→ Blockchain block

block→blockchain {_} {_} {_} {_} {_} {genesisTree}
(blockc nxTree fstBlock1 sndBlockCoinbase) =
fstBlock (blockc nxTree unit sndBlockCoinbase)

block→blockchain {_} {_} {_} {_} {_} {txtree tree tx proofLessQtTX}
(blockc nxTree fstBlock1 sndBlockCoinbase)
with firstTree tree

... | fstTreec nxTree1 fstBlockc = addBlock
(block→blockchain (blockc nxTree1 fstBlockc (fstTree→coinbase fstBlock1)))
(blockc nxTree fstBlock1 sndBlockCoinbase)
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In this function, if the first transaction tree of the block is a genesis tree, it will
return a blockchain of just one block. If it is a regular tree, it tries to find the first
transaction tree of this block. Using a recursive definition of block to blockchain, it
is possible to generate all the rest of this blockchain from this block.

It is not always possible to generate a block from the transaction tree. It is because
the last transaction of a transaction tree must be a coinbase transaction. Here,
the function that returns a decidable if it is possible to generate a block from the
transaction tree.

txTree→Block : ∀
{block time outputs totalFees qtTransactions}
(tree : TXTree time block outputs totalFees qtTransactions)
→ Dec (RawBlock tree)

txTree→Block genesisTree =
no ń{(rawBlockc (blockc _ _ sndBlockCoinbase)) → sndBlockCoinbase}

txTree→Block (txtree tree tx proofLessQtTX)
with isCoinbaseTree (txtree tree tx proofLessQtTX)

... | no ¬isCoinbase =
no ń{ (rawBlockc (blockc _ _ coinbaseTree)) → ¬isCoinbase coinbaseTree}

... | yes isCoinbase = let fTree = firstTree (txtree tree tx proofLessQtTX)
nxTree = fstTree.nxTree fTree
fBlock = fstTree.fstBlockc fTree

in yes (rawBlockc (blockc nxTree fBlock isCoinbase))

The definition of the raw block gets just the coinbase transaction tree as an explicit
type. The other transaction tree can be founded opening the record.

record RawBlock
{block : Nat}
{time2 : Time}
{outputs2 : List TXFieldWithId}
{totalFees2 : Amount}
{qtTransactions2 : tQtTxs}
(tree2 : TXTree time2 block outputs2 totalFees2 qtTransactions2)
: Set where
constructor rawBlockc
field
{time} : Time
{outputs} : List TXFieldWithId
{totalFees} : Amount
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{qtTransactions} : tQtTxs
{tree} : TXTree time block outputs totalFees qtTransactions
rawBlock : Block tree tree2

The code of the definition of what is a coinbase tree:

coinbaseTree : ∀
{block time outputs totalFees qtTransactions}
(tree : TXTree time block outputs totalFees qtTransactions)
→ Set

coinbaseTree genesisTree = ⊥
coinbaseTree (txtree _ (normalTX _ _ _ _) _) = ⊥
coinbaseTree (txtree _ (coinbase _ _ _) _) = >

The definition of a coinbase tree is the one that the last transaction is a coinbase.

The code verifies if the last transaction tree is a coinbase tree:

isCoinbaseTree : ∀
{block time outputs totalFees qtTransactions}
(tree : TXTree time block outputs totalFees qtTransactions)
→ Dec (coinbaseTree tree)

isCoinbaseTree genesisTree = no ń x → x
isCoinbaseTree (txtree _ (normalTX _ _ _ _) _) = no ń x → x
isCoinbaseTree (txtree _ (coinbase _ _ _) _) = yes tt

If it is, it returns that it is possible to create a block from that with the block
definition. If it is not, it returns that it is impossible to create a block from this
transaction tree.

But to create a block from this coinbase transaction tree, it is necessary to find the
first tree of the block.

record fstTree
{block : Nat}
{time2 : Time}
{outputs2 : List TXFieldWithId}
{totalFees2 : Amount}
{qtTransactions2 : tQtTxs}
(txTree2 : TXTree time2 block outputs2 totalFees2 qtTransactions2)
: Set where
constructor fstTreec
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field
{time} : Time
{outputs} : List TXFieldWithId
{totalFees} : Amount
{qtTransactions} : tQtTxs
{tree} : TXTree time block outputs totalFees qtTransactions
nxTree : nextTXTree tree txTree2
fstBlockc : firstTreesInBlock tree

The definition of fstTree is that it has a tree that is before this tree in the type. And
this tree before is the first in the block.

firstTreesInBlock : ∀
{block time outputs totalFees qtTransactions}
(tree : TXTree time block outputs totalFees qtTransactions)
→ Set

firstTreesInBlock genesisTree = >
firstTreesInBlock (txtree genesisTree _ _) = ⊥
firstTreesInBlock (txtree (txtree _ (normalTX _ _ _ _) _) _ _) = ⊥
firstTreesInBlock (txtree (txtree _ (coinbase _ _ _) _) _ _) = >

The decidable version of this Set :

isFirstTreeInBlock : ∀
{block time outputs totalFees qtTransactions}
(tree : TXTree time block outputs totalFees qtTransactions)
→ Dec (firstTreesInBlock tree)

isFirstTreeInBlock genesisTree = yes tt
isFirstTreeInBlock (txtree genesisTree (normalTX _ _ _ _) _) = no ń x → x
isFirstTreeInBlock (txtree genesisTree (coinbase _ _ _) _) = no ń x → x
isFirstTreeInBlock (txtree (txtree _ (normalTX _ _ _ _) _) _ _) = no ń x → x
isFirstTreeInBlock (txtree (txtree _ (coinbase _ _ _) _) _ _) = yes tt

In this case, it pattern match trees that are genesis tree or if the last transaction
was a coinbase transaction.

firstTree : ∀
{block time outputs totalFees qtTransactions}
(tree : TXTree time block outputs totalFees qtTransactions)
→ fstTree tree

firstTree genesisTree = fstTreec (firstTX genesisTree) unit
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firstTree {block2} (txtree {block1} tree tx proofLessQtTX)
with isFirstTreeInBlock (txtree tree tx proofLessQtTX)

... | yes isFirst = fstTreec (firstTX (txtree tree tx proofLessQtTX)) isFirst

... | no ¬first with let fstTree = firstTree tree in block2 == block1

... | yes eq = let ftree = firstTree tree
nxTree = fstTree.nxTree ftree
fstBlock = fstTree.fstBlockc ftree
chgType = changeTXType nxTree fstBlock tx proofLessQtTX eq

in TXChange.fTree chgType
... | no ¬eq = ⊥-elim impossible

where postulate impossible : ⊥

To find the first tree in the block, there are two cases. The first case is that if the
tree is a genesis tree, so the result is itself. The second case is if it a regular tree,
so it still has to divide it in many cases. If this tree is already the first tree in the
block, it will return itself. If this tree is not, it has to verify if the block number of
the tree is the same as this tree. If the block number is equal, it can recursively find
the first tree. If it is not, it has to provide proof that this tree must be the first and
the blocks numbers are different.

To define what it means of one tree is next to another:

data nextTXTree :
{block1 : Nat}
{time1 : Time}
{outputs1 : List TXFieldWithId}
{totalFees1 : Amount}
{qtTransactions1 : tQtTxs}
(txTree1 : TXTree time1 block1 outputs1 totalFees1 qtTransactions1)

{block2 : Nat}
{time2 : Time}
{outputs2 : List TXFieldWithId}
{totalFees2 : Amount}
{qtTransactions2 : tQtTxs}
(txTree2 : TXTree time2 block2 outputs2 totalFees2 qtTransactions2)
→ Set where

firstTX : ∀ {block time outputs totalFees qtTransactions}
(txTree : TXTree time block outputs totalFees qtTransactions)
→ nextTXTree txTree txTree
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nextTX : ∀ {block1 time1 outputs1 totalFees1 qtTransactions1}
{txTree1 : TXTree time1 block1 outputs1 totalFees1 qtTransactions1}

{block2 time2 outputs2 totalFees2 qtTransactions2}
{txTree2 : TXTree time2 block2 outputs2 totalFees2 qtTransactions2}

(nxTree : nextTXTree txTree1 txTree2)

{outSize amount}
{outputTX : VectorOutput time2 outSize amount}
(tx : TX txTree2 outputTX)
(proofLessQtTX :
Either
(IsTrue (lessNat (finToNat qtTransactions2) totalQtSub1))
(isCoinbase tx))

→ nextTXTree txTree1 (txtree txTree2 tx proofLessQtTX)

Both trees (txTree1 and txTree2 ) can be equal or different. If both trees are the
same, they are next to each other. If there is a proof that both trees are next to
each other and if there is one tree that was generated from the last one, so the first
tree is next to the last one.
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4 Conclusion
Formal methods in cryptocurrency space are growing significantly. Companies like
Input Output HK (IOHK), creator of Cardano, and Tezos are investing a lot in it.
This work contributes to the formal specification and definition of Bitcoin.

A good way of defining Bitcoin is by creating a model of it in a language with
dependent types. Agda looks like a good language for it, but other languages like
CoQ, Lean can do this work too.

In this work, we define a lot of functionalities about Bitcoin. There were definitions
of transactions, transactions tree, block, and blockchain. They were all defined in
data constructors and records. Most of the model definition was in the transaction
tree because of the state of Bitcoin changes after every transaction. There are other
ways of doing the same thing, but I thought that this way is easier to define. Another
way could be defining more characteristics of the block and blockchain in their types
instead of doing all of it in the transaction tree (what was done in this work).

Some part of this code is not just for modeling the Bitcoin, but to validates inputs
that can be wrong. They were functions that transform terms with simpler types
(without dependent types) to terms with more complex types (with them). For
example, transforming raw transactions into possible valid transactions.

4.1 Future Work

In this work, there was a code that transforms a raw transaction into a possible valid
transaction. It is not a decidable function, because there is no definition of what it
is an invalid transaction. From future work, it should have a definition of what is
an invalid raw transaction. So it will avoid that valid transaction will be discarded.

There is no definition of crypto functions like SHA-256 and elliptic curves in this
work. One thing that can be done is importing these functions from some Agda or
Haskell packages (cryptohash in Hackage).

In this cryptocurrency, there is no nonce and mining either.

This work does not have any IO operation. So it is not possible to add transactions
in the blockchain from the command line or the network.

The cryptocurrency of this work does not have any smart contract. It would be
good to define some of them in it.
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