open import Relation.Binary module Algebra.MatrixData.Relation.Setoid.Base {a ℓ} (S : Setoid a ℓ) where open import Data.Nat using (ℕ) open import Algebra.MatrixData import Data.Vec.Relation.Binary.Equality.Setoid as VSetoid import Data.Vec.Relation.Binary.Pointwise.Inductive as Pointwise open Setoid S renaming (Carrier to A) module ≈ = VSetoid S module ≋ {n} = VSetoid (≈.≋-setoid n) private variable m n : ℕ _≋_ : ∀ {m n} → REL (Matrix A n m) (Matrix A n m) _ _≋_ = ≋._≋_ ≋-setoid : ℕ → ℕ → Setoid _ _ ≋-setoid n m = ≋.≋-setoid {n} m decidable : Decidable _≈_ → Decidable (_≋_ {n} {m}) decidable dec = Pointwise.decidable (Pointwise.decidable dec)