{-# OPTIONS --without-K --safe #-}
open import Algebra.Lattice.Bundles
module Algebra.Lattice.Properties.BooleanAlgebra
{b₁ b₂} (B : BooleanAlgebra b₁ b₂)
where
open BooleanAlgebra B
import Algebra.Lattice.Properties.DistributiveLattice as DistribLatticeProperties
open import Algebra.Core
open import Algebra.Structures _≈_
open import Algebra.Definitions _≈_
open import Algebra.Consequences.Setoid setoid
open import Algebra.Bundles
open import Algebra.Lattice.Structures _≈_
open import Relation.Binary.Reasoning.Setoid setoid
open import Relation.Binary
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; module Equivalence)
open import Data.Product using (_,_)
open DistribLatticeProperties distributiveLattice public
∧-∨-isBooleanAlgebra : IsBooleanAlgebra _∧_ _∨_ ¬_ ⊥ ⊤
∧-∨-isBooleanAlgebra = record
{ isDistributiveLattice = ∧-∨-isDistributiveLattice
; ∨-complement = ∧-complement
; ∧-complement = ∨-complement
; ¬-cong = ¬-cong
}
∧-∨-booleanAlgebra : BooleanAlgebra _ _
∧-∨-booleanAlgebra = record
{ isBooleanAlgebra = ∧-∨-isBooleanAlgebra
}
∧-identityʳ : RightIdentity ⊤ _∧_
∧-identityʳ x = begin
x ∧ ⊤ ≈⟨ ∧-congˡ (sym (∨-complementʳ _)) ⟩
x ∧ (x ∨ ¬ x) ≈⟨ ∧-absorbs-∨ _ _ ⟩
x ∎
∧-identityˡ : LeftIdentity ⊤ _∧_
∧-identityˡ = comm+idʳ⇒idˡ ∧-comm ∧-identityʳ
∧-identity : Identity ⊤ _∧_
∧-identity = ∧-identityˡ , ∧-identityʳ
∨-identityʳ : RightIdentity ⊥ _∨_
∨-identityʳ x = begin
x ∨ ⊥ ≈⟨ ∨-congˡ $ sym (∧-complementʳ _) ⟩
x ∨ x ∧ ¬ x ≈⟨ ∨-absorbs-∧ _ _ ⟩
x ∎
∨-identityˡ : LeftIdentity ⊥ _∨_
∨-identityˡ = comm+idʳ⇒idˡ ∨-comm ∨-identityʳ
∨-identity : Identity ⊥ _∨_
∨-identity = ∨-identityˡ , ∨-identityʳ
∧-zeroʳ : RightZero ⊥ _∧_
∧-zeroʳ x = begin
x ∧ ⊥ ≈˘⟨ ∧-congˡ (∧-complementʳ x) ⟩
x ∧ x ∧ ¬ x ≈˘⟨ ∧-assoc x x (¬ x) ⟩
(x ∧ x) ∧ ¬ x ≈⟨ ∧-congʳ (∧-idem x) ⟩
x ∧ ¬ x ≈⟨ ∧-complementʳ x ⟩
⊥ ∎
∧-zeroˡ : LeftZero ⊥ _∧_
∧-zeroˡ = comm+zeʳ⇒zeˡ ∧-comm ∧-zeroʳ
∧-zero : Zero ⊥ _∧_
∧-zero = ∧-zeroˡ , ∧-zeroʳ
∨-zeroʳ : ∀ x → x ∨ ⊤ ≈ ⊤
∨-zeroʳ x = begin
x ∨ ⊤ ≈˘⟨ ∨-congˡ (∨-complementʳ x) ⟩
x ∨ x ∨ ¬ x ≈˘⟨ ∨-assoc x x (¬ x) ⟩
(x ∨ x) ∨ ¬ x ≈⟨ ∨-congʳ (∨-idem x) ⟩
x ∨ ¬ x ≈⟨ ∨-complementʳ x ⟩
⊤ ∎
∨-zeroˡ : LeftZero ⊤ _∨_
∨-zeroˡ = comm+zeʳ⇒zeˡ ∨-comm ∨-zeroʳ
∨-zero : Zero ⊤ _∨_
∨-zero = ∨-zeroˡ , ∨-zeroʳ
∨-⊥-isMonoid : IsMonoid _∨_ ⊥
∨-⊥-isMonoid = record
{ isSemigroup = ∨-isSemigroup
; identity = ∨-identity
}
∧-⊤-isMonoid : IsMonoid _∧_ ⊤
∧-⊤-isMonoid = record
{ isSemigroup = ∧-isSemigroup
; identity = ∧-identity
}
∨-⊥-isCommutativeMonoid : IsCommutativeMonoid _∨_ ⊥
∨-⊥-isCommutativeMonoid = record
{ isMonoid = ∨-⊥-isMonoid
; comm = ∨-comm
}
∧-⊤-isCommutativeMonoid : IsCommutativeMonoid _∧_ ⊤
∧-⊤-isCommutativeMonoid = record
{ isMonoid = ∧-⊤-isMonoid
; comm = ∧-comm
}
∨-∧-isSemiring : IsSemiring _∨_ _∧_ ⊥ ⊤
∨-∧-isSemiring = record
{ isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = ∨-⊥-isCommutativeMonoid
; *-cong = ∧-cong
; *-assoc = ∧-assoc
; *-identity = ∧-identity
; distrib = ∧-distrib-∨
}
; zero = ∧-zero
}
∧-∨-isSemiring : IsSemiring _∧_ _∨_ ⊤ ⊥
∧-∨-isSemiring = record
{ isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = ∧-⊤-isCommutativeMonoid
; *-cong = ∨-cong
; *-assoc = ∨-assoc
; *-identity = ∨-identity
; distrib = ∨-distrib-∧
}
; zero = ∨-zero
}
∨-∧-isCommutativeSemiring : IsCommutativeSemiring _∨_ _∧_ ⊥ ⊤
∨-∧-isCommutativeSemiring = record
{ isSemiring = ∨-∧-isSemiring
; *-comm = ∧-comm
}
∧-∨-isCommutativeSemiring : IsCommutativeSemiring _∧_ _∨_ ⊤ ⊥
∧-∨-isCommutativeSemiring = record
{ isSemiring = ∧-∨-isSemiring
; *-comm = ∨-comm
}
∨-∧-commutativeSemiring : CommutativeSemiring _ _
∨-∧-commutativeSemiring = record
{ isCommutativeSemiring = ∨-∧-isCommutativeSemiring
}
∧-∨-commutativeSemiring : CommutativeSemiring _ _
∧-∨-commutativeSemiring = record
{ isCommutativeSemiring = ∧-∨-isCommutativeSemiring
}
private
lemma : ∀ x y → x ∧ y ≈ ⊥ → x ∨ y ≈ ⊤ → ¬ x ≈ y
lemma x y x∧y=⊥ x∨y=⊤ = begin
¬ x ≈˘⟨ ∧-identityʳ _ ⟩
¬ x ∧ ⊤ ≈˘⟨ ∧-congˡ x∨y=⊤ ⟩
¬ x ∧ (x ∨ y) ≈⟨ ∧-distribˡ-∨ _ _ _ ⟩
¬ x ∧ x ∨ ¬ x ∧ y ≈⟨ ∨-congʳ $ ∧-complementˡ _ ⟩
⊥ ∨ ¬ x ∧ y ≈˘⟨ ∨-congʳ x∧y=⊥ ⟩
x ∧ y ∨ ¬ x ∧ y ≈˘⟨ ∧-distribʳ-∨ _ _ _ ⟩
(x ∨ ¬ x) ∧ y ≈⟨ ∧-congʳ $ ∨-complementʳ _ ⟩
⊤ ∧ y ≈⟨ ∧-identityˡ _ ⟩
y ∎
⊥≉⊤ : ¬ ⊥ ≈ ⊤
⊥≉⊤ = lemma ⊥ ⊤ (∧-identityʳ _) (∨-zeroʳ _)
⊤≉⊥ : ¬ ⊤ ≈ ⊥
⊤≉⊥ = lemma ⊤ ⊥ (∧-zeroʳ _) (∨-identityʳ _)
¬-involutive : Involutive ¬_
¬-involutive x = lemma (¬ x) x (∧-complementˡ _) (∨-complementˡ _)
deMorgan₁ : ∀ x y → ¬ (x ∧ y) ≈ ¬ x ∨ ¬ y
deMorgan₁ x y = lemma (x ∧ y) (¬ x ∨ ¬ y) lem₁ lem₂
where
lem₁ = begin
(x ∧ y) ∧ (¬ x ∨ ¬ y) ≈⟨ ∧-distribˡ-∨ _ _ _ ⟩
(x ∧ y) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∨-congʳ $ ∧-congʳ $ ∧-comm _ _ ⟩
(y ∧ x) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∧-assoc _ _ _ ⟨ ∨-cong ⟩ ∧-assoc _ _ _ ⟩
y ∧ (x ∧ ¬ x) ∨ x ∧ (y ∧ ¬ y) ≈⟨ (∧-congˡ $ ∧-complementʳ _) ⟨ ∨-cong ⟩
(∧-congˡ $ ∧-complementʳ _) ⟩
(y ∧ ⊥) ∨ (x ∧ ⊥) ≈⟨ ∧-zeroʳ _ ⟨ ∨-cong ⟩ ∧-zeroʳ _ ⟩
⊥ ∨ ⊥ ≈⟨ ∨-identityʳ _ ⟩
⊥ ∎
lem₃ = begin
(x ∧ y) ∨ ¬ x ≈⟨ ∨-distribʳ-∧ _ _ _ ⟩
(x ∨ ¬ x) ∧ (y ∨ ¬ x) ≈⟨ ∧-congʳ $ ∨-complementʳ _ ⟩
⊤ ∧ (y ∨ ¬ x) ≈⟨ ∧-identityˡ _ ⟩
y ∨ ¬ x ≈⟨ ∨-comm _ _ ⟩
¬ x ∨ y ∎
lem₂ = begin
(x ∧ y) ∨ (¬ x ∨ ¬ y) ≈˘⟨ ∨-assoc _ _ _ ⟩
((x ∧ y) ∨ ¬ x) ∨ ¬ y ≈⟨ ∨-congʳ lem₃ ⟩
(¬ x ∨ y) ∨ ¬ y ≈⟨ ∨-assoc _ _ _ ⟩
¬ x ∨ (y ∨ ¬ y) ≈⟨ ∨-congˡ $ ∨-complementʳ _ ⟩
¬ x ∨ ⊤ ≈⟨ ∨-zeroʳ _ ⟩
⊤ ∎
deMorgan₂ : ∀ x y → ¬ (x ∨ y) ≈ ¬ x ∧ ¬ y
deMorgan₂ x y = begin
¬ (x ∨ y) ≈˘⟨ ¬-cong $ ((¬-involutive _) ⟨ ∨-cong ⟩ (¬-involutive _)) ⟩
¬ (¬ ¬ x ∨ ¬ ¬ y) ≈˘⟨ ¬-cong $ deMorgan₁ _ _ ⟩
¬ ¬ (¬ x ∧ ¬ y) ≈⟨ ¬-involutive _ ⟩
¬ x ∧ ¬ y ∎
module XorRing
(xor : Op₂ Carrier)
(⊕-def : ∀ x y → xor x y ≈ (x ∨ y) ∧ ¬ (x ∧ y))
where
private
infixl 6 _⊕_
_⊕_ : Op₂ Carrier
_⊕_ = xor
helper : ∀ {x y u v} → x ≈ y → u ≈ v → x ∧ ¬ u ≈ y ∧ ¬ v
helper x≈y u≈v = x≈y ⟨ ∧-cong ⟩ ¬-cong u≈v
⊕-cong : Congruent₂ _⊕_
⊕-cong {x} {y} {u} {v} x≈y u≈v = begin
x ⊕ u ≈⟨ ⊕-def _ _ ⟩
(x ∨ u) ∧ ¬ (x ∧ u) ≈⟨ helper (x≈y ⟨ ∨-cong ⟩ u≈v)
(x≈y ⟨ ∧-cong ⟩ u≈v) ⟩
(y ∨ v) ∧ ¬ (y ∧ v) ≈˘⟨ ⊕-def _ _ ⟩
y ⊕ v ∎
⊕-comm : Commutative _⊕_
⊕-comm x y = begin
x ⊕ y ≈⟨ ⊕-def _ _ ⟩
(x ∨ y) ∧ ¬ (x ∧ y) ≈⟨ helper (∨-comm _ _) (∧-comm _ _) ⟩
(y ∨ x) ∧ ¬ (y ∧ x) ≈˘⟨ ⊕-def _ _ ⟩
y ⊕ x ∎
¬-distribˡ-⊕ : ∀ x y → ¬ (x ⊕ y) ≈ ¬ x ⊕ y
¬-distribˡ-⊕ x y = begin
¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-def _ _ ⟩
¬ ((x ∨ y) ∧ (¬ (x ∧ y))) ≈⟨ ¬-cong (∧-distribʳ-∨ _ _ _) ⟩
¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (x ∧ y))) ≈⟨ ¬-cong $ ∨-congˡ $ ∧-congˡ $ ¬-cong (∧-comm _ _) ⟩
¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (y ∧ x))) ≈⟨ ¬-cong $ lem _ _ ⟨ ∨-cong ⟩ lem _ _ ⟩
¬ ((x ∧ ¬ y) ∨ (y ∧ ¬ x)) ≈⟨ deMorgan₂ _ _ ⟩
¬ (x ∧ ¬ y) ∧ ¬ (y ∧ ¬ x) ≈⟨ ∧-congʳ $ deMorgan₁ _ _ ⟩
(¬ x ∨ (¬ ¬ y)) ∧ ¬ (y ∧ ¬ x) ≈⟨ helper (∨-congˡ $ ¬-involutive _) (∧-comm _ _) ⟩
(¬ x ∨ y) ∧ ¬ (¬ x ∧ y) ≈˘⟨ ⊕-def _ _ ⟩
¬ x ⊕ y ∎
where
lem : ∀ x y → x ∧ ¬ (x ∧ y) ≈ x ∧ ¬ y
lem x y = begin
x ∧ ¬ (x ∧ y) ≈⟨ ∧-congˡ $ deMorgan₁ _ _ ⟩
x ∧ (¬ x ∨ ¬ y) ≈⟨ ∧-distribˡ-∨ _ _ _ ⟩
(x ∧ ¬ x) ∨ (x ∧ ¬ y) ≈⟨ ∨-congʳ $ ∧-complementʳ _ ⟩
⊥ ∨ (x ∧ ¬ y) ≈⟨ ∨-identityˡ _ ⟩
x ∧ ¬ y ∎
¬-distribʳ-⊕ : ∀ x y → ¬ (x ⊕ y) ≈ x ⊕ ¬ y
¬-distribʳ-⊕ x y = begin
¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-comm _ _ ⟩
¬ (y ⊕ x) ≈⟨ ¬-distribˡ-⊕ _ _ ⟩
¬ y ⊕ x ≈⟨ ⊕-comm _ _ ⟩
x ⊕ ¬ y ∎
⊕-annihilates-¬ : ∀ x y → x ⊕ y ≈ ¬ x ⊕ ¬ y
⊕-annihilates-¬ x y = begin
x ⊕ y ≈˘⟨ ¬-involutive _ ⟩
¬ ¬ (x ⊕ y) ≈⟨ ¬-cong $ ¬-distribˡ-⊕ _ _ ⟩
¬ (¬ x ⊕ y) ≈⟨ ¬-distribʳ-⊕ _ _ ⟩
¬ x ⊕ ¬ y ∎
⊕-identityˡ : LeftIdentity ⊥ _⊕_
⊕-identityˡ x = begin
⊥ ⊕ x ≈⟨ ⊕-def _ _ ⟩
(⊥ ∨ x) ∧ ¬ (⊥ ∧ x) ≈⟨ helper (∨-identityˡ _) (∧-zeroˡ _) ⟩
x ∧ ¬ ⊥ ≈⟨ ∧-congˡ ⊥≉⊤ ⟩
x ∧ ⊤ ≈⟨ ∧-identityʳ _ ⟩
x ∎
⊕-identityʳ : RightIdentity ⊥ _⊕_
⊕-identityʳ _ = ⊕-comm _ _ ⟨ trans ⟩ ⊕-identityˡ _
⊕-identity : Identity ⊥ _⊕_
⊕-identity = ⊕-identityˡ , ⊕-identityʳ
⊕-inverseˡ : LeftInverse ⊥ id _⊕_
⊕-inverseˡ x = begin
x ⊕ x ≈⟨ ⊕-def _ _ ⟩
(x ∨ x) ∧ ¬ (x ∧ x) ≈⟨ helper (∨-idem _) (∧-idem _) ⟩
x ∧ ¬ x ≈⟨ ∧-complementʳ _ ⟩
⊥ ∎
⊕-inverseʳ : RightInverse ⊥ id _⊕_
⊕-inverseʳ _ = ⊕-comm _ _ ⟨ trans ⟩ ⊕-inverseˡ _
⊕-inverse : Inverse ⊥ id _⊕_
⊕-inverse = ⊕-inverseˡ , ⊕-inverseʳ
∧-distribˡ-⊕ : _∧_ DistributesOverˡ _⊕_
∧-distribˡ-⊕ x y z = begin
x ∧ (y ⊕ z) ≈⟨ ∧-congˡ $ ⊕-def _ _ ⟩
x ∧ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩
(x ∧ (y ∨ z)) ∧ ¬ (y ∧ z) ≈⟨ ∧-congˡ $ deMorgan₁ _ _ ⟩
(x ∧ (y ∨ z)) ∧
(¬ y ∨ ¬ z) ≈˘⟨ ∨-identityˡ _ ⟩
⊥ ∨
((x ∧ (y ∨ z)) ∧
(¬ y ∨ ¬ z)) ≈⟨ ∨-congʳ lem₃ ⟩
((x ∧ (y ∨ z)) ∧ ¬ x) ∨
((x ∧ (y ∨ z)) ∧
(¬ y ∨ ¬ z)) ≈˘⟨ ∧-distribˡ-∨ _ _ _ ⟩
(x ∧ (y ∨ z)) ∧
(¬ x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∧-congˡ $ ∨-congˡ (deMorgan₁ _ _) ⟩
(x ∧ (y ∨ z)) ∧
(¬ x ∨ ¬ (y ∧ z)) ≈˘⟨ ∧-congˡ (deMorgan₁ _ _) ⟩
(x ∧ (y ∨ z)) ∧
¬ (x ∧ (y ∧ z)) ≈⟨ helper refl lem₁ ⟩
(x ∧ (y ∨ z)) ∧
¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ ∧-congʳ $ ∧-distribˡ-∨ _ _ _ ⟩
((x ∧ y) ∨ (x ∧ z)) ∧
¬ ((x ∧ y) ∧ (x ∧ z)) ≈˘⟨ ⊕-def _ _ ⟩
(x ∧ y) ⊕ (x ∧ z) ∎
where
lem₂ = begin
x ∧ (y ∧ z) ≈˘⟨ ∧-assoc _ _ _ ⟩
(x ∧ y) ∧ z ≈⟨ ∧-congʳ $ ∧-comm _ _ ⟩
(y ∧ x) ∧ z ≈⟨ ∧-assoc _ _ _ ⟩
y ∧ (x ∧ z) ∎
lem₁ = begin
x ∧ (y ∧ z) ≈˘⟨ ∧-congʳ (∧-idem _) ⟩
(x ∧ x) ∧ (y ∧ z) ≈⟨ ∧-assoc _ _ _ ⟩
x ∧ (x ∧ (y ∧ z)) ≈⟨ ∧-congˡ lem₂ ⟩
x ∧ (y ∧ (x ∧ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩
(x ∧ y) ∧ (x ∧ z) ∎
lem₃ = begin
⊥ ≈˘⟨ ∧-zeroʳ _ ⟩
(y ∨ z) ∧ ⊥ ≈˘⟨ ∧-congˡ (∧-complementʳ _) ⟩
(y ∨ z) ∧ (x ∧ ¬ x) ≈˘⟨ ∧-assoc _ _ _ ⟩
((y ∨ z) ∧ x) ∧ ¬ x ≈⟨ ∧-comm _ _ ⟨ ∧-cong ⟩ refl ⟩
(x ∧ (y ∨ z)) ∧ ¬ x ∎
∧-distribʳ-⊕ : _∧_ DistributesOverʳ _⊕_
∧-distribʳ-⊕ = comm+distrˡ⇒distrʳ ⊕-cong ∧-comm ∧-distribˡ-⊕
∧-distrib-⊕ : _∧_ DistributesOver _⊕_
∧-distrib-⊕ = ∧-distribˡ-⊕ , ∧-distribʳ-⊕
private
lemma₂ : ∀ x y u v →
(x ∧ y) ∨ (u ∧ v) ≈
((x ∨ u) ∧ (y ∨ u)) ∧
((x ∨ v) ∧ (y ∨ v))
lemma₂ x y u v = begin
(x ∧ y) ∨ (u ∧ v) ≈⟨ ∨-distribˡ-∧ _ _ _ ⟩
((x ∧ y) ∨ u) ∧ ((x ∧ y) ∨ v) ≈⟨ ∨-distribʳ-∧ _ _ _
⟨ ∧-cong ⟩
∨-distribʳ-∧ _ _ _ ⟩
((x ∨ u) ∧ (y ∨ u)) ∧
((x ∨ v) ∧ (y ∨ v)) ∎
⊕-assoc : Associative _⊕_
⊕-assoc x y z = sym $ begin
x ⊕ (y ⊕ z) ≈⟨ refl ⟨ ⊕-cong ⟩ ⊕-def _ _ ⟩
x ⊕ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ⊕-def _ _ ⟩
(x ∨ ((y ∨ z) ∧ ¬ (y ∧ z))) ∧
¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ lem₃ ⟨ ∧-cong ⟩ lem₄ ⟩
(((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧
(((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ ∧-assoc _ _ _ ⟩
((x ∨ y) ∨ z) ∧
(((x ∨ ¬ y) ∨ ¬ z) ∧
(((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ ∧-congˡ lem₅ ⟩
((x ∨ y) ∨ z) ∧
(((¬ x ∨ ¬ y) ∨ z) ∧
(((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈˘⟨ ∧-assoc _ _ _ ⟩
(((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧
(((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ lem₁ ⟨ ∧-cong ⟩ lem₂ ⟩
(((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z) ∧
¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ≈˘⟨ ⊕-def _ _ ⟩
((x ∨ y) ∧ ¬ (x ∧ y)) ⊕ z ≈˘⟨ ⊕-def _ _ ⟨ ⊕-cong ⟩ refl ⟩
(x ⊕ y) ⊕ z ∎
where
lem₁ = begin
((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z) ≈˘⟨ ∨-distribʳ-∧ _ _ _ ⟩
((x ∨ y) ∧ (¬ x ∨ ¬ y)) ∨ z ≈˘⟨ ∨-congʳ $ ∧-congˡ (deMorgan₁ _ _) ⟩
((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z ∎
lem₂′ = begin
(x ∨ ¬ y) ∧ (¬ x ∨ y) ≈˘⟨ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩
(⊤ ∧ (x ∨ ¬ y)) ∧ ((¬ x ∨ y) ∧ ⊤) ≈˘⟨ (∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _)
⟨ ∧-cong ⟩
(∧-congˡ $ ∨-complementˡ _) ⟩
((¬ x ∨ x) ∧ (¬ y ∨ x)) ∧
((¬ x ∨ y) ∧ (¬ y ∨ y)) ≈˘⟨ lemma₂ _ _ _ _ ⟩
(¬ x ∧ ¬ y) ∨ (x ∧ y) ≈˘⟨ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩
¬ (x ∨ y) ∨ ¬ ¬ (x ∧ y) ≈˘⟨ deMorgan₁ _ _ ⟩
¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∎
lem₂ = begin
((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈˘⟨ ∨-distribʳ-∧ _ _ _ ⟩
((x ∨ ¬ y) ∧ (¬ x ∨ y)) ∨ ¬ z ≈⟨ ∨-congʳ lem₂′ ⟩
¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ ¬ z ≈˘⟨ deMorgan₁ _ _ ⟩
¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ∎
lem₃ = begin
x ∨ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congˡ $ ∧-congˡ $ deMorgan₁ _ _ ⟩
x ∨ ((y ∨ z) ∧ (¬ y ∨ ¬ z)) ≈⟨ ∨-distribˡ-∧ _ _ _ ⟩
(x ∨ (y ∨ z)) ∧ (x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∨-assoc _ _ _ ⟨ ∧-cong ⟩ ∨-assoc _ _ _ ⟩
((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z) ∎
lem₄′ = begin
¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ deMorgan₁ _ _ ⟩
¬ (y ∨ z) ∨ ¬ ¬ (y ∧ z) ≈⟨ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩
(¬ y ∧ ¬ z) ∨ (y ∧ z) ≈⟨ lemma₂ _ _ _ _ ⟩
((¬ y ∨ y) ∧ (¬ z ∨ y)) ∧
((¬ y ∨ z) ∧ (¬ z ∨ z)) ≈⟨ (∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _)
⟨ ∧-cong ⟩
(∧-congˡ $ ∨-complementˡ _) ⟩
(⊤ ∧ (y ∨ ¬ z)) ∧
((¬ y ∨ z) ∧ ⊤) ≈⟨ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩
(y ∨ ¬ z) ∧ (¬ y ∨ z) ∎
lem₄ = begin
¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ deMorgan₁ _ _ ⟩
¬ x ∨ ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congˡ lem₄′ ⟩
¬ x ∨ ((y ∨ ¬ z) ∧ (¬ y ∨ z)) ≈⟨ ∨-distribˡ-∧ _ _ _ ⟩
(¬ x ∨ (y ∨ ¬ z)) ∧
(¬ x ∨ (¬ y ∨ z)) ≈˘⟨ ∨-assoc _ _ _ ⟨ ∧-cong ⟩ ∨-assoc _ _ _ ⟩
((¬ x ∨ y) ∨ ¬ z) ∧
((¬ x ∨ ¬ y) ∨ z) ≈⟨ ∧-comm _ _ ⟩
((¬ x ∨ ¬ y) ∨ z) ∧
((¬ x ∨ y) ∨ ¬ z) ∎
lem₅ = begin
((x ∨ ¬ y) ∨ ¬ z) ∧
(((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩
(((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧
((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-congʳ $ ∧-comm _ _ ⟩
(((¬ x ∨ ¬ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧
((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-assoc _ _ _ ⟩
((¬ x ∨ ¬ y) ∨ z) ∧
(((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ∎
⊕-isMagma : IsMagma _⊕_
⊕-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = ⊕-cong
}
⊕-isSemigroup : IsSemigroup _⊕_
⊕-isSemigroup = record
{ isMagma = ⊕-isMagma
; assoc = ⊕-assoc
}
⊕-⊥-isMonoid : IsMonoid _⊕_ ⊥
⊕-⊥-isMonoid = record
{ isSemigroup = ⊕-isSemigroup
; identity = ⊕-identity
}
⊕-⊥-isGroup : IsGroup _⊕_ ⊥ id
⊕-⊥-isGroup = record
{ isMonoid = ⊕-⊥-isMonoid
; inverse = ⊕-inverse
; ⁻¹-cong = id
}
⊕-⊥-isAbelianGroup : IsAbelianGroup _⊕_ ⊥ id
⊕-⊥-isAbelianGroup = record
{ isGroup = ⊕-⊥-isGroup
; comm = ⊕-comm
}
⊕-∧-isRing : IsRing _⊕_ _∧_ id ⊥ ⊤
⊕-∧-isRing = record
{ +-isAbelianGroup = ⊕-⊥-isAbelianGroup
; *-cong = ∧-cong
; *-assoc = ∧-assoc
; *-identity = ∧-identity
; distrib = ∧-distrib-⊕
; zero = ∧-zero
}
⊕-∧-isCommutativeRing : IsCommutativeRing _⊕_ _∧_ id ⊥ ⊤
⊕-∧-isCommutativeRing = record
{ isRing = ⊕-∧-isRing
; *-comm = ∧-comm
}
⊕-∧-commutativeRing : CommutativeRing _ _
⊕-∧-commutativeRing = record
{ isCommutativeRing = ⊕-∧-isCommutativeRing
}
infixl 6 _⊕_
_⊕_ : Op₂ Carrier
x ⊕ y = (x ∨ y) ∧ ¬ (x ∧ y)
module DefaultXorRing = XorRing _⊕_ (λ _ _ → refl)