{-# OPTIONS --safe #-}
module Cubical.Data.FinData.Base where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function

import Cubical.Data.Empty as 
open import Cubical.Data.Nat using (; zero; suc; _+_; _·_; +-assoc)
open import Cubical.Data.Bool.Base
open import Cubical.Relation.Nullary

private
  variable
     : Level
    A B : Type 

data Fin :   Type₀ where
  zero : {n : }  Fin (suc n)
  suc  : {n : } (i : Fin n)  Fin (suc n)

-- useful patterns
pattern one = suc zero
pattern two = suc one

toℕ :  {n}  Fin n  
toℕ zero    = 0
toℕ (suc i) = suc (toℕ i)

fromℕ : (n : )  Fin (suc n)
fromℕ zero    = zero
fromℕ (suc n) = suc (fromℕ n)

toFromId :  (n : )  toℕ (fromℕ n)  n
toFromId zero = refl
toFromId (suc n) = cong suc (toFromId n)

¬Fin0 : ¬ Fin 0
¬Fin0 ()

_==_ :  {n}  Fin n  Fin n  Bool
zero == zero   = true
zero == suc _  = false
suc _ == zero  = false
suc m == suc n = m == n

weakenFin : {n : }  Fin n  Fin (suc n)
weakenFin zero = zero
weakenFin (suc i) = suc (weakenFin i)

predFin : {n : }  Fin (suc (suc n))  Fin (suc n)
predFin zero = zero
predFin (suc x) = x

foldrFin :  {n}  (A  B  B)  B  (Fin n  A)  B
foldrFin {n = zero}  _ b _ = b
foldrFin {n = suc n} f b l = f (l zero) (foldrFin f b (l  suc))

elim
  : ∀(P : ∀{k}  Fin k  Type )
   (∀{k}  P {suc k} zero)
   (∀{k}  {fn : Fin k}  P fn  P (suc fn))
   {k : }  (fn : Fin k)  P fn

elim P fz fs {zero} = ⊥.rec  ¬Fin0
elim P fz fs {suc k} zero = fz
elim P fz fs {suc k} (suc fj) = fs (elim P fz fs fj)


rec : ∀{k}  (a0 aS : A)  Fin k  A
rec a0 aS zero = a0
rec a0 aS (suc x) = aS

FinVec : (A : Type ) (n : )  Type 
FinVec A n = Fin n  A

replicateFinVec : (n : )  A  FinVec A n
replicateFinVec _ a _ = a


_++Fin_ : {n m : }  FinVec A n  FinVec A m  FinVec A (n + m)
_++Fin_ {n = zero} _ W i = W i
_++Fin_ {n = suc n} V _ zero = V zero
_++Fin_ {n = suc n} V W (suc i) = ((V  suc) ++Fin W) i