{-# OPTIONS --safe #-}
module Cubical.Data.Int.Properties where

open import Cubical.Core.Everything

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Transport
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Function

open import Cubical.Data.Empty as Empty
open import Cubical.Data.Nat
  hiding   (+-assoc ; +-comm)
  renaming (_·_ to _·ℕ_; _+_ to _+ℕ_ ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm)
open import Cubical.Data.Bool
open import Cubical.Data.Sum
open import Cubical.Data.Int.Base

open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq

sucPred :  i  sucℤ (predℤ i)  i
sucPred (pos zero)    = refl
sucPred (pos (suc n)) = refl
sucPred (negsuc n)    = refl

predSuc :  i  predℤ (sucℤ i)  i
predSuc (pos n)          = refl
predSuc (negsuc zero)    = refl
predSuc (negsuc (suc n)) = refl

injPos :  {a b : }  pos a  pos b  a  b
injPos {a} h = subst T h refl
  where
  T :   Type₀
  T (pos x)    = a  x
  T (negsuc _) = 

injNegsuc :  {a b : }  negsuc a  negsuc b  a  b
injNegsuc {a} h = subst T h refl
  where
  T :   Type₀
  T (pos _) = 
  T (negsuc x) = a  x

posNotnegsuc :  (a b : )  ¬ (pos a  negsuc b)
posNotnegsuc a b h = subst T h 0
  where
  T :   Type₀
  T (pos _)    = 
  T (negsuc _) = 

negsucNotpos :  (a b : )  ¬ (negsuc a  pos b)
negsucNotpos a b h = subst T h 0
  where
  T :   Type₀
  T (pos _)    = 
  T (negsuc _) = 

discreteℤ : Discrete 
discreteℤ (pos n) (pos m) with discreteℕ n m
... | yes p = yes (cong pos p)
... | no p  = no  x  p (injPos x))
discreteℤ (pos n) (negsuc m) = no (posNotnegsuc n m)
discreteℤ (negsuc n) (pos m) = no (negsucNotpos n m)
discreteℤ (negsuc n) (negsuc m) with discreteℕ n m
... | yes p = yes (cong negsuc p)
... | no p  = no  x  p (injNegsuc x))

isSetℤ : isSet 
isSetℤ = Discrete→isSet discreteℤ

-pos :  n  - (pos n)  neg n
-pos zero    = refl
-pos (suc n) = refl

-neg :  n  - (neg n)  pos n
-neg zero    = refl
-neg (suc n) = refl

-Involutive :  z  - (- z)  z
-Involutive (pos n)    = cong -_ (-pos n)  -neg n
-Involutive (negsuc n) = refl

isEquiv- : isEquiv (-_)
isEquiv- = isoToIsEquiv (iso -_ -_ -Involutive -Involutive)

sucℤ+pos :  n m  sucℤ (m +pos n)  (sucℤ m) +pos n
sucℤ+pos zero m = refl
sucℤ+pos (suc n) m = cong sucℤ (sucℤ+pos n m)

predℤ+negsuc :  n m  predℤ (m +negsuc n)  (predℤ m) +negsuc n
predℤ+negsuc zero m = refl
predℤ+negsuc (suc n) m = cong predℤ (predℤ+negsuc n m)

sucℤ+negsuc :  n m  sucℤ (m +negsuc n)  (sucℤ m) +negsuc n
sucℤ+negsuc zero m = (sucPred _)  (sym (predSuc _))
sucℤ+negsuc (suc n) m =      _ ≡⟨ sucPred _ 
  m +negsuc n                    ≡[ i ]⟨ predSuc m (~ i) +negsuc n 
  (predℤ (sucℤ m)) +negsuc n ≡⟨ sym (predℤ+negsuc n (sucℤ m)) 
  predℤ (sucℤ m +negsuc n) 

predℤ+pos :  n m  predℤ (m +pos n)  (predℤ m) +pos n
predℤ+pos zero m = refl
predℤ+pos (suc n) m =     _ ≡⟨ predSuc _ 
  m +pos n                    ≡[ i ]⟨ sucPred m (~ i) + pos n 
  (sucℤ (predℤ m)) +pos n ≡⟨ sym (sucℤ+pos n (predℤ m))
  (predℤ m) +pos (suc n)    

predℤ-pos :  n  predℤ(- (pos n))  negsuc n
predℤ-pos zero = refl
predℤ-pos (suc n) = refl

predℤ+ :  m n  predℤ (m + n)  (predℤ m) + n
predℤ+ m (pos n) = predℤ+pos n m
predℤ+ m (negsuc n) = predℤ+negsuc n m

+predℤ :  m n  predℤ (m + n)  m + (predℤ n)
+predℤ m (pos zero) = refl
+predℤ m (pos (suc n)) = (predSuc (m + pos n))  (cong (_+_ m) (sym (predSuc (pos n))))
+predℤ m (negsuc n) = refl

sucℤ+ :  m n  sucℤ (m + n)  (sucℤ m) + n
sucℤ+ m (pos n) = sucℤ+pos n m
sucℤ+ m (negsuc n) = sucℤ+negsuc n m

+sucℤ :  m n  sucℤ (m + n)   m + (sucℤ n)
+sucℤ m (pos n) = refl
+sucℤ m (negsuc zero) = sucPred _
+sucℤ m (negsuc (suc n)) = (sucPred (m +negsuc n))  (cong (_+_ m) (sym (sucPred (negsuc n))))

pos0+ :  z  z  pos 0 + z
pos0+ (pos zero) = refl
pos0+ (pos (suc n)) = cong sucℤ (pos0+ (pos n))
pos0+ (negsuc zero) = refl
pos0+ (negsuc (suc n)) = cong predℤ (pos0+ (negsuc n))

negsuc0+ :  z  predℤ z  negsuc 0 + z
negsuc0+ (pos zero) = refl
negsuc0+ (pos (suc n)) = (sym (sucPred (pos n)))  (cong sucℤ (negsuc0+ _))
negsuc0+ (negsuc zero) = refl
negsuc0+ (negsuc (suc n)) = cong predℤ (negsuc0+ (negsuc n))

ind-comm : {A : Type₀} (_∙_ : A  A  A) (f :   A) (g : A  A)
           (p :  {n}  f (suc n)  g (f n))
           (g∙ :  a b  g (a  b)  g a  b)
           (∙g :  a b  g (a  b)  a  g b)
           (base :  z  z  f 0  f 0  z)
           z n  z  f n  f n  z
ind-comm _∙_ f g p g∙ ∙g base z 0 = base z
ind-comm _∙_ f g p g∙ ∙g base z (suc n) =
  z  f (suc n) ≡[ i ]⟨ z  p {n} i 
  z  g (f n)   ≡⟨ sym ( ∙g z (f n)) 
  g (z  f n)   ≡⟨ cong g IH 
  g (f n  z)   ≡⟨ g∙ (f n) z 
  g (f n)  z   ≡[ i ]⟨ p {n} (~ i)  z 
  f (suc n)  z 
  where
  IH = ind-comm _∙_ f g p g∙ ∙g base z n

ind-assoc : {A : Type₀} (_·_ : A  A  A) (f :   A)
        (g : A  A) (p :  a b  g (a · b)  a · (g b))
        (q :  {c}  f (suc c)  g (f c))
        (base :  m n  (m · n) · (f 0)  m · (n · (f 0)))
        (m n : A) (o : )
       m · (n · (f o))  (m · n) · (f o)
ind-assoc _·_ f g p q base m n 0 = sym (base m n)
ind-assoc _·_ f g p q base m n (suc o) =
    m · (n · (f (suc o))) ≡[ i ]⟨ m · (n · q {o} i) 
    m · (n · (g (f o)))   ≡[ i ]⟨ m · (p n (f o) (~ i)) 
    m · (g (n · (f o)))   ≡⟨ sym (p m (n · (f o)))
    g (m · (n · (f o)))   ≡⟨ cong g IH 
    g ((m · n) · (f o))   ≡⟨ p (m · n) (f o) 
    (m · n) · (g (f o))   ≡[ i ]⟨ (m · n) · q {o} (~ i) 
    (m · n) · (f (suc o)) 
    where
    IH = ind-assoc _·_ f g p q base m n o

+Comm :  m n  m + n  n + m
+Comm m (pos n) = ind-comm _+_ pos sucℤ refl sucℤ+ +sucℤ pos0+ m n
+Comm m (negsuc n) = ind-comm _+_ negsuc predℤ refl predℤ+ +predℤ negsuc0+ m n

+Assoc :  m n o  m + (n + o)  (m + n) + o
+Assoc m n (pos o) = ind-assoc _+_ pos sucℤ +sucℤ refl  _ _  refl) m n o
+Assoc m n (negsuc o) = ind-assoc _+_ negsuc predℤ +predℤ refl +predℤ m n o

-- Compose sucPathℤ with itself n times. Transporting along this
-- will be addition, transporting with it backwards will be subtraction.
-- Use this to define _+'_ for which is easier to prove
-- isEquiv (λ n → n +' m) since _+'_ is defined by transport

sucPathℤ :   
sucPathℤ = ua (sucℤ , isoToIsEquiv (iso sucℤ predℤ sucPred predSuc))

addEq :     
addEq zero = refl
addEq (suc n) = (addEq n)  sucPathℤ

predPathℤ :   
predPathℤ = ua (predℤ , isoToIsEquiv (iso predℤ sucℤ predSuc sucPred))

subEq :     
subEq zero = refl
subEq (suc n) = (subEq n)  predPathℤ

_+'_ :     
m +' pos n    = transport (addEq n) m
m +' negsuc n = transport (subEq (suc n)) m

+'≡+ : _+'_  _+_
+'≡+ i m (pos zero) = m
+'≡+ i m (pos (suc n)) = sucℤ (+'≡+ i m (pos n))
+'≡+ i m (negsuc zero) = predℤ m
+'≡+ i m (negsuc (suc n)) = predℤ (+'≡+ i m (negsuc n)) --
  -- compPath (λ i → (+'≡+ i (predℤ m) (negsuc n))) (sym (predℤ+negsuc n m)) i

isEquivAddℤ' : (m : )  isEquiv  n  n +' m)
isEquivAddℤ' (pos n)    = isEquivTransport (addEq n)
isEquivAddℤ' (negsuc n) = isEquivTransport (subEq (suc n))

isEquivAddℤ : (m : )  isEquiv  n  n + m)
isEquivAddℤ = subst  add  (m : )  isEquiv  n  add n m)) +'≡+ isEquivAddℤ'

-- below is an alternate proof of isEquivAddℤ for comparison
-- We also have two useful lemma here.

minusPlus :  m n  (n - m) + m  n
minusPlus (pos zero) n = refl
minusPlus (pos 1) = sucPred
minusPlus (pos (suc (suc m))) n =
  sucℤ ((n +negsuc (suc m)) +pos (suc m)) ≡⟨ sucℤ+pos (suc m) _ 
  sucℤ (n +negsuc (suc m)) +pos (suc m)   ≡[ i ]⟨ sucPred (n +negsuc m) i +pos (suc m) 
  (n - pos (suc m)) +pos (suc m)            ≡⟨ minusPlus (pos (suc m)) n 
  n 
minusPlus (negsuc zero) = predSuc
minusPlus (negsuc (suc m)) n =
  predℤ (sucℤ (sucℤ (n +pos m)) +negsuc m) ≡⟨ predℤ+negsuc m _ 
  predℤ (sucℤ (sucℤ (n +pos m))) +negsuc m ≡[ i ]⟨ predSuc (sucℤ (n +pos m)) i +negsuc m 
  sucℤ (n +pos m) +negsuc m                    ≡⟨ minusPlus (negsuc m) n 
  n 

-≡0 : (m n : )  m - n  0  m  n
-≡0 m n p = sym (subst  a  a + n  m) p (minusPlus n m))  +Comm 0 n

plusMinus :  m n  (n + m) - m  n
plusMinus (pos zero) n = refl
plusMinus (pos (suc m)) = minusPlus (negsuc m)
plusMinus (negsuc m) = minusPlus (pos (suc m))

private
  alternateProof : (m : )  isEquiv  n  n + m)
  alternateProof m = isoToIsEquiv (iso  n  n + m)
                                        n  n - m)
                                       (minusPlus m)
                                       (plusMinus m))

-Cancel :  z  z - z  0
-Cancel z = cong (_- z) (pos0+ z)  plusMinus z (pos zero)

-Cancel' :  z  - z + z  0
-Cancel' z = +Comm (- z) z  -Cancel z

pos+ :  m n  pos (m +ℕ n)  pos m + pos n
pos+ zero zero = refl
pos+ zero (suc n)    =
  pos (zero +ℕ suc n)    ≡⟨ +Comm (pos (suc n)) (pos zero) 
  pos zero + pos (suc n) 
pos+ (suc m) zero    =
  pos (suc (m +ℕ zero))  ≡⟨ cong pos (cong suc (+-zero m)) 
  pos (suc m) + pos zero 
pos+ (suc m) (suc n) =
  pos (suc m +ℕ suc n)            ≡⟨ cong pos (cong suc (+-suc m n)) 
  sucℤ (pos (suc (m +ℕ n)))     ≡⟨ cong sucℤ (cong sucℤ (pos+ m n)) 
  sucℤ (sucℤ (pos m + pos n)) ≡⟨ sucℤ+ (pos m) (sucℤ (pos n)) 
  pos (suc m) + pos (suc n)       

negsuc+ :  m n  negsuc (m +ℕ n)  negsuc m - pos n
negsuc+ zero zero       = refl
negsuc+ zero (suc n)    =
  negsuc (zero +ℕ suc n)    ≡⟨ negsuc0+ (negsuc n) 
  negsuc zero + negsuc n    ≡⟨ cong (negsuc zero +_) (-pos (suc n)) 
  negsuc zero - pos (suc n) 
negsuc+ (suc m) zero    =
  negsuc (suc m +ℕ zero)    ≡⟨ cong negsuc (cong suc (+-zero m)) 
  negsuc (suc m) - pos zero 
negsuc+ (suc m) (suc n) =
  negsuc (suc m +ℕ suc n)        ≡⟨ cong negsuc (sym (+-suc m (suc n))) 
  negsuc (m +ℕ suc (suc n))      ≡⟨ negsuc+ m (suc (suc n)) 
  negsuc m - pos (suc (suc n))   ≡⟨ sym (+predℤ (negsuc m) (negsuc n)) 
  predℤ (negsuc m + negsuc n ) ≡⟨ predℤ+ (negsuc m) (negsuc n) 
  negsuc (suc m) - pos (suc n)   

neg+ :  m n  neg (m +ℕ n)  neg m + neg n
neg+ zero zero       = refl
neg+ zero (suc n)    = neg (zero +ℕ suc n)    ≡⟨ +Comm (neg (suc n)) (pos zero) 
                       neg zero + neg (suc n) 
neg+ (suc m) zero    = neg (suc (m +ℕ zero))  ≡⟨ cong neg (cong suc (+-zero m)) 
                       neg (suc m) + neg zero 
neg+ (suc m) (suc n) = neg (suc m +ℕ suc n)      ≡⟨ negsuc+ m (suc n) 
                       neg (suc m) + neg (suc n) 

ℕ-AntiComm :  m n  m ℕ- n  - (n ℕ- m)
ℕ-AntiComm zero zero       = refl
ℕ-AntiComm zero (suc n)    = refl
ℕ-AntiComm (suc m) zero    = refl
ℕ-AntiComm (suc m) (suc n) = suc m ℕ- suc n  ≡⟨ ℕ-AntiComm m n 
                          - (suc n ℕ- suc m) 

pos- :  m n  m ℕ- n  pos m - pos n
pos- zero zero       = refl
pos- zero (suc n)    = zero ℕ- suc n          ≡⟨ +Comm (negsuc n) (pos zero) 
                       pos zero - pos (suc n) 
pos- (suc m) zero    = refl
pos- (suc m) (suc n) =
  suc m ℕ- suc n                       ≡⟨ pos- m n 
  pos m - pos n                        ≡⟨ sym (sucPred (pos m - pos n)) 
  sucℤ (predℤ (pos m - pos n))     ≡⟨ cong sucℤ (+predℤ (pos m) (- pos n)) 
  sucℤ (pos m + predℤ (- (pos n))) ≡⟨ cong sucℤ (cong (pos m +_) (predℤ-pos n)) 
  sucℤ (pos m + negsuc n)            ≡⟨ sucℤ+negsuc n (pos m) 
  pos (suc m) - pos (suc n)            

-AntiComm :  m n  m - n  - (n - m)
-AntiComm (pos n) (pos m)       = pos n - pos m   ≡⟨ sym (pos- n m) 
                                   n ℕ- m         ≡⟨ ℕ-AntiComm n m 
                                - (m ℕ- n)        ≡⟨ cong -_ (pos- m n) 
                                - (pos m - pos n) 
-AntiComm (pos n) (negsuc m)    =
     pos n - negsuc m     ≡⟨ +Comm (pos n) (pos (suc m)) 
     pos (suc m) + pos n  ≡⟨ sym (pos+ (suc m) n) 
     pos (suc m +ℕ n)     ≡⟨ sym (-neg (suc m +ℕ n)) 
  -  neg (suc m +ℕ n)     ≡⟨ cong -_ (neg+ (suc m) n) 
  - (neg (suc m) + neg n) ≡⟨ cong -_ (cong (negsuc m +_) (sym (-pos n))) 
  - (negsuc m - pos n)    
-AntiComm (negsuc n) (pos m)    =
     negsuc n - pos m     ≡⟨ sym (negsuc+ n m) 
     negsuc (n +ℕ m)      ≡⟨ cong -_ (pos+ (suc n) m) 
  - (pos (suc n) + pos m) ≡⟨ cong -_ (+Comm (pos (suc n)) (pos m)) 
  - (pos m - negsuc n)    
-AntiComm (negsuc n) (negsuc m) =
     negsuc n - negsuc m        ≡⟨ +Comm (negsuc n) (pos (suc m)) 
     pos (suc m) + negsuc n     ≡⟨ sym (pos- (suc m) (suc n)) 
     suc m ℕ- suc n             ≡⟨ ℕ-AntiComm (suc m) (suc n) 
  - (suc n ℕ- suc m)            ≡⟨ cong -_ (pos- (suc n) (suc m)) 
  - (pos (suc n) - pos (suc m)) ≡⟨ cong -_ (+Comm (pos (suc n)) (negsuc m)) 
  - (negsuc m - negsuc n)       

-Dist+ :  m n  - (m + n)  (- m) + (- n)
-Dist+ (pos n) (pos m)       =
   - (pos n + pos m)     ≡⟨ cong -_ (sym (pos+ n m)) 
   -  pos (n +ℕ m)       ≡⟨ -pos (n +ℕ m) 
      neg (n +ℕ m)       ≡⟨ neg+ n m 
      neg n + neg m      ≡⟨ cong (neg n +_) (sym (-pos m)) 
      neg n + (- pos m)  ≡⟨ cong (_+ (- pos m)) (sym (-pos n)) 
  (-  pos n) + (- pos m) 
-Dist+ (pos n) (negsuc m)    =
   - (pos n + negsuc m)     ≡⟨ sym (-AntiComm (pos (suc m)) (pos n)) 
      pos (suc m) - pos n   ≡⟨ +Comm (pos (suc m)) (- pos n) 
  (-  pos n) + (- negsuc m) 
-Dist+ (negsuc n) (pos m)    =
   - (negsuc n + pos m)     ≡⟨ cong -_ (+Comm (negsuc n) (pos m)) 
   - (pos m + negsuc n)     ≡⟨ sym (-AntiComm (- negsuc n) (pos m)) 
  (-  negsuc n) + (- pos m) 
-Dist+ (negsuc n) (negsuc m) =
   - (negsuc n + negsuc m)     ≡⟨ cong -_ (sym (neg+ (suc n) (suc m))) 
   -  neg (suc n +ℕ suc m)     ≡⟨ pos+ (suc n) (suc m) 
  (-  negsuc n) + (- negsuc m) 


-- multiplication

pos·pos : (n m : )  pos (n ·ℕ m)  pos n · pos m
pos·pos zero m = refl
pos·pos (suc n) m = pos+ m (n ·ℕ m)  cong (pos m +_) (pos·pos n m)

pos·negsuc : (n m : )  pos n · negsuc m  - (pos n · pos (suc m))
pos·negsuc zero m = refl
pos·negsuc (suc n) m =
      i  negsuc m + (pos·negsuc n m i))
    sym (-Dist+ (pos (suc m)) (pos n · pos (suc m)))

negsuc·pos : (n m : )  negsuc n · pos m  - (pos (suc n) · pos m)
negsuc·pos zero m = refl
negsuc·pos (suc n) m =
    cong ((- pos m) +_) (negsuc·pos n m)
   sym (-Dist+ (pos m) (pos m + (pos n · pos m)))

negsuc·negsuc : (n m : )  negsuc n · negsuc m  pos (suc n) · pos (suc m)
negsuc·negsuc zero m = refl
negsuc·negsuc (suc n) m = cong (pos (suc m) +_) (negsuc·negsuc n m)

·Comm : (x y : )  x · y  y · x
·Comm (pos n) (pos m) = lem n m
  where
  lem : (n m : )  (pos n · pos m)  (pos m · pos n)
  lem zero zero = refl
  lem zero (suc m) i = +Comm (lem zero m i) (pos zero) i
  lem (suc n) zero i = +Comm (pos zero) (lem n zero i) i
  lem (suc n) (suc m) =
        i  pos (suc m) + (lem n (suc m) i))
    ∙∙ +Assoc (pos (suc m)) (pos n) (pos m · pos n)
    ∙∙  i  sucℤ+ (pos m) (pos n) (~ i)  + (pos m · pos n))
    ∙∙  i  +Comm (pos m) (pos (suc n)) i + (pos m · pos n))
    ∙∙ sym (+Assoc (pos (suc n)) (pos m) (pos m · pos n))
    ∙∙  i  pos (suc n) + (pos m + (lem n m (~ i))))
    ∙∙ λ i  pos (suc n) + (lem (suc n) m i)
·Comm (pos n) (negsuc m) =
     pos·negsuc n m
  ∙∙ cong -_ (·Comm (pos n) (pos (suc m)))
  ∙∙ sym (negsuc·pos m n)
·Comm (negsuc n) (pos m) =
  sym (pos·negsuc m n
  ∙∙ cong -_ (·Comm (pos m) (pos (suc n)))
  ∙∙ sym (negsuc·pos n m))
·Comm (negsuc n) (negsuc m) =
  negsuc·negsuc n m ∙∙ ·Comm (pos (suc n)) (pos (suc m)) ∙∙ sym (negsuc·negsuc m n)

·Rid : (x : )  x · 1  x
·Rid x = ·Comm x 1

private
  distrHelper : (x y z w : )  (x + y) + (z + w)  ((x + z) + (y + w))
  distrHelper x y z w =
      +Assoc (x + y) z w
   ∙∙ cong (_+ w) (sym (+Assoc x y z) ∙∙ cong (x +_) (+Comm y z) ∙∙ +Assoc x z y)
   ∙∙ sym (+Assoc (x + z) y w)

·DistR+ : (x y z : )  x · (y + z)  x · y + x · z
·DistR+ (pos zero) y z = refl
·DistR+ (pos (suc n)) y z =
     cong ((y + z) +_) (·DistR+ (pos n) y z)
    distrHelper y z (pos n · y) (pos n · z)
·DistR+ (negsuc zero) y z = -Dist+ y z
·DistR+ (negsuc (suc n)) y z =
    cong₂ _+_ (-Dist+ y z) (·DistR+ (negsuc n) y z)
   distrHelper (- y) (- z) (negsuc n · y) (negsuc n · z)

·DistL+ : (x y z : )  (x + y) · z  x · z + y · z
·DistL+ x y z = ·Comm (x + y) z ∙∙ ·DistR+ z x y ∙∙ cong₂ _+_ (·Comm z x) (·Comm z y)

-DistL· : (b c : )  - (b · c)  - b · c
-DistL· (pos zero) c = refl
-DistL· (pos (suc n)) (pos m) = sym (negsuc·pos n m)
-DistL· (pos (suc zero)) (negsuc m) =
    -Dist+ (negsuc m) (pos zero · negsuc m)
   cong (pos (suc m) +_) (-DistL· (pos zero) (negsuc m))
-DistL· (pos (suc (suc n))) (negsuc m) =
    -Dist+ (negsuc m) (pos (suc n) · negsuc m)
   cong (pos (suc m) +_) (-DistL· (pos (suc n)) (negsuc m))
-DistL· (negsuc zero) c = -Involutive c
-DistL· (negsuc (suc n)) c =
   -Dist+ (- c) (negsuc n · c)
 ∙∙ cong (_+ (- (negsuc n · c))) (-Involutive c)
 ∙∙ cong (c +_) (-DistL· (negsuc n) c)

-DistR· : (b c : )  - (b · c)  b · - c
-DistR· b c = cong (-_) (·Comm b c) ∙∙ -DistL· c b ∙∙ ·Comm (- c) b

-DistLR· : (b c : )  b · c  - b · - c
-DistLR· b c = sym (-Involutive (b · c))   i  - -DistL· b c i)  -DistR· (- b) c

ℤ·negsuc : (n : ) (m : )  n · negsuc m  - (n · pos (suc m))
ℤ·negsuc (pos n) m = pos·negsuc n m
ℤ·negsuc (negsuc n) m = negsuc·negsuc n m  sym (-DistL· (negsuc n) (pos (suc m)))


·Assoc : (a b c : )  (a · (b · c))  ((a · b) · c)
·Assoc (pos zero) b c = refl
·Assoc (pos (suc n)) b c =
      cong ((b · c) +_) (·Assoc (pos n) b c)
   ∙∙ cong₂ _+_ (·Comm b c) (·Comm (pos n · b) c)
   ∙∙ sym (·DistR+ c b (pos n · b))
     sym (·Comm _ c)
·Assoc (negsuc zero) = -DistL·
·Assoc (negsuc (suc n)) b c =
     cong ((- (b · c)) +_) (·Assoc (negsuc n) b c)
  ∙∙ cong (_+ ((negsuc n · b) · c)) (-DistL· b c)
  ∙∙ sym (·DistL+ (- b) (negsuc n · b) c)

minus≡0- : (x : )  - x  (0 - x)
minus≡0- x = +Comm (- x) 0

-- Absolute values
abs→⊎ : (x : ) (n : )  abs x  n  (x  pos n)  (x  - pos n)
abs→⊎ x n = J  n _  (x  pos n)  (x  - pos n)) (help x)
  where
  help : (x : )  (x  pos (abs x))  (x  - pos (abs x))
  help (pos n) = inl refl
  help (negsuc n) = inr refl

⊎→abs : (x : ) (n : )  (x  pos n)  (x  - pos n)  abs x  n
⊎→abs (pos n₁) n (inl x₁) = cong abs x₁
⊎→abs (negsuc n₁) n (inl x₁) = cong abs x₁
⊎→abs x zero (inr x₁) = cong abs x₁
⊎→abs x (suc n) (inr x₁) = cong abs x₁

abs≡0 : (x : )  abs x  0  x  0
abs≡0 x p =
  case (abs→⊎ x 0 p)
  return  _  x  0) of
    λ { (inl r)  r
      ; (inr r)  r }

¬x≡0→¬abs≡0 : {x : }  ¬ x  0  ¬ abs x  0
¬x≡0→¬abs≡0 p q = p (abs≡0 _ q)

abs- : (x : )  abs (- x)  abs x
abs- (pos zero) = refl
abs- (pos (suc n)) = refl
abs- (negsuc n) = refl

absPos·Pos : (m n : )  abs (pos m · pos n)  abs (pos m) ·ℕ abs (pos n)
absPos·Pos m n i = abs (pos·pos m n (~ i))

abs· : (m n : )  abs (m · n)  abs m ·ℕ abs n
abs· (pos m) (pos n) = absPos·Pos m n
abs· (pos m) (negsuc n) =
  cong abs (pos·negsuc m n)  abs- (pos m · pos (suc n))  absPos·Pos m (suc n)
abs· (negsuc m) (pos n) =
  cong abs (negsuc·pos m n)  abs- (pos (suc m) · pos n)  absPos·Pos (suc m) n
abs· (negsuc m) (negsuc n) = cong abs (negsuc·negsuc m n)  absPos·Pos (suc m) (suc n)

-- ℤ is integral domain

isIntegralℤPosPos : (c m : )  pos c · pos m  0  ¬ c  0  m  0
isIntegralℤPosPos 0 m _ q = Empty.rec (q refl)
isIntegralℤPosPos (suc c) m p _ =
  sym (0≡n·sm→0≡n {n = m} {m = c} (sym (injPos (pos·pos (suc c) m  p))  ·ℕ-comm (suc c) m))

isIntegralℤ : (c m : )  c · m  0  ¬ c  0  m  0
isIntegralℤ (pos c) (pos m) p h i = pos (isIntegralℤPosPos c m p  r  h (cong pos r)) i)
isIntegralℤ (pos c) (negsuc m) p h =
  Empty.rec (snotz (isIntegralℤPosPos c (suc m)
    (sym (-Involutive _)  cong (-_) (sym (pos·negsuc c m)  p))  r  h (cong pos r))))
isIntegralℤ (negsuc c) (pos m) p _ i =
  pos (isIntegralℤPosPos (suc c) m
    (sym (-Involutive _)  cong (-_) (sym (negsuc·pos c m)  p)) snotz i)
isIntegralℤ (negsuc c) (negsuc m) p _ =
  Empty.rec (snotz (isIntegralℤPosPos (suc c) (suc m) (sym (negsuc·negsuc c m)  p) snotz))

private
  ·lCancel-helper : (c m n : )  c · m  c · n  c · (m - n)  0
  ·lCancel-helper c m n p =
      ·DistR+ c m (- n)
      i  c · m + -DistR· c n (~ i))
     subst  a  c · m - a  0) p (-Cancel (c · m))

·lCancel : (c m n : )  c · m  c · n  ¬ c  0  m  n
·lCancel c m n p h = -≡0 _ _ (isIntegralℤ c (m - n) (·lCancel-helper c m n p) h)

·rCancel : (c m n : )  m · c  n · c  ¬ c  0  m  n
·rCancel c m n p h = ·lCancel c m n (·Comm c m  p  ·Comm n c) h


-- ℤ is non-trivial

0≢1-ℤ : ¬ 0  1
0≢1-ℤ p = encodeℕ _ _ (injPos p)