{-# OPTIONS --safe #-}
module Cubical.Foundations.Equiv.HalfAdjoint where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Function
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
private
variable
ℓ ℓ' : Level
A : Type ℓ
B : Type ℓ'
record isHAEquiv {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) : Type (ℓ-max ℓ ℓ') where
field
g : B → A
linv : ∀ a → g (f a) ≡ a
rinv : ∀ b → f (g b) ≡ b
com : ∀ a → cong f (linv a) ≡ rinv (f a)
com-op : ∀ b → cong g (rinv b) ≡ linv (g b)
com-op b = subst (λ b → cong g (rinv b) ≡ linv (g b)) (rinv b) (helper (g b))
where
helper : ∀ a → cong g (rinv (f a)) ≡ linv (g (f a))
helper a i j = hcomp (λ k → λ { (i = i0) → g (rinv (f a) (j ∨ ~ k))
; (i = i1) → linv (linv a (~ k)) j
; (j = i0) → g (com a (~ i) (~ k))
; (j = i1) → linv a (i ∧ ~ k) })
(linv a (i ∧ j))
isHAEquiv→Iso : Iso A B
Iso.fun isHAEquiv→Iso = f
Iso.inv isHAEquiv→Iso = g
Iso.rightInv isHAEquiv→Iso = rinv
Iso.leftInv isHAEquiv→Iso = linv
isHAEquiv→isEquiv : isEquiv f
isHAEquiv→isEquiv .equiv-proof y = (g y , rinv y) , isCenter where
isCenter : ∀ xp → (g y , rinv y) ≡ xp
isCenter (x , p) i = gy≡x i , ry≡p i where
gy≡x : g y ≡ x
gy≡x = sym (cong g p) ∙∙ refl ∙∙ linv x
lem0 : Square (cong f (linv x)) p (cong f (linv x)) p
lem0 i j = invSides-filler p (sym (cong f (linv x))) (~ i) j
ry≡p : Square (rinv y) p (cong f gy≡x) refl
ry≡p i j = hcomp (λ k → λ { (i = i0) → cong rinv p k j
; (i = i1) → lem0 k j
; (j = i0) → f (doubleCompPath-filler (sym (cong g p)) refl (linv x) k i)
; (j = i1) → p k })
(com x (~ i) j)
open isHAEquiv using (isHAEquiv→Iso; isHAEquiv→isEquiv) public
HAEquiv : (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ')
HAEquiv A B = Σ[ f ∈ (A → B) ] isHAEquiv f
iso→HAEquiv : Iso A B → HAEquiv A B
iso→HAEquiv e = f , isHAEquivf
where
f = Iso.fun e
g = Iso.inv e
ε = Iso.rightInv e
η = Iso.leftInv e
Hfa≡fHa : (f : A → A) → (H : ∀ a → f a ≡ a) → ∀ a → H (f a) ≡ cong f (H a)
Hfa≡fHa f H = J (λ f p → ∀ a → funExt⁻ (sym p) (f a) ≡ cong f (funExt⁻ (sym p) a))
(λ a → refl)
(sym (funExt H))
isHAEquivf : isHAEquiv f
isHAEquiv.g isHAEquivf = g
isHAEquiv.linv isHAEquivf = η
isHAEquiv.rinv isHAEquivf b i =
hcomp (λ j → λ { (i = i0) → ε (f (g b)) j
; (i = i1) → ε b j })
(f (η (g b) i))
isHAEquiv.com isHAEquivf a i j =
hcomp (λ k → λ { (i = i0) → ε (f (η a j)) k
; (j = i0) → ε (f (g (f a))) k
; (j = i1) → ε (f a) k})
(f (Hfa≡fHa (λ x → g (f x)) η a (~ i) j))
equiv→HAEquiv : A ≃ B → HAEquiv A B
equiv→HAEquiv e = e .fst , λ where
.isHAEquiv.g → invIsEq (snd e)
.isHAEquiv.linv → retIsEq (snd e)
.isHAEquiv.rinv → secIsEq (snd e)
.isHAEquiv.com a → sym (commPathIsEq (snd e) a)
congIso : {x y : A} (e : Iso A B) → Iso (x ≡ y) (Iso.fun e x ≡ Iso.fun e y)
congIso {x = x} {y} e = goal
where
open isHAEquiv (iso→HAEquiv e .snd)
open Iso
goal : Iso (x ≡ y) (Iso.fun e x ≡ Iso.fun e y)
fun goal = cong (iso→HAEquiv e .fst)
inv goal p = sym (linv x) ∙∙ cong g p ∙∙ linv y
rightInv goal p i j =
hcomp (λ k → λ { (i = i0) → iso→HAEquiv e .fst
(doubleCompPath-filler (sym (linv x)) (cong g p) (linv y) k j)
; (i = i1) → rinv (p j) k
; (j = i0) → com x i k
; (j = i1) → com y i k })
(iso→HAEquiv e .fst (g (p j)))
leftInv goal p i j =
hcomp (λ k → λ { (i = i1) → p j
; (j = i0) → Iso.leftInv e x (i ∨ k)
; (j = i1) → Iso.leftInv e y (i ∨ k) })
(Iso.leftInv e (p j) i)
invCongFunct : {x : A} (e : Iso A B) (p : Iso.fun e x ≡ Iso.fun e x) (q : Iso.fun e x ≡ Iso.fun e x)
→ Iso.inv (congIso e) (p ∙ q) ≡ Iso.inv (congIso e) p ∙ Iso.inv (congIso e) q
invCongFunct {x = x} e p q = helper (Iso.inv e) _ _ _
where
helper : {x : A} {y : B} (f : A → B) (r : f x ≡ y) (p q : x ≡ x)
→ (sym r ∙∙ cong f (p ∙ q) ∙∙ r) ≡ (sym r ∙∙ cong f p ∙∙ r) ∙ (sym r ∙∙ cong f q ∙∙ r)
helper {x = x} f =
J (λ y r → (p q : x ≡ x)
→ (sym r ∙∙ cong f (p ∙ q) ∙∙ r) ≡ (sym r ∙∙ cong f p ∙∙ r) ∙ (sym r ∙∙ cong f q ∙∙ r))
λ p q → (λ i → rUnit (congFunct f p q i) (~ i))
∙ λ i → rUnit (cong f p) i ∙ rUnit (cong f q) i
invCongRefl : {x : A} (e : Iso A B) → Iso.inv (congIso {x = x} {y = x} e) refl ≡ refl
invCongRefl {x = x} e = (λ i → (λ j → Iso.leftInv e x (i ∨ ~ j)) ∙∙ refl ∙∙ (λ j → Iso.leftInv e x (i ∨ j))) ∙ sym (rUnit refl)