------------------------------------------------------------------------
-- The Agda standard library
--
-- Any (◇) for containers
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Data.Container.Relation.Unary.Any where

open import Level using (_⊔_)
open import Relation.Unary using (Pred; _⊆_)
open import Data.Product as Prod using (_,_; proj₂; )
open import Function

open import Data.Container.Core hiding (map)
import Data.Container.Morphism as M

record  {s p} (C : Container s p) {x } {X : Set x}
         (P : Pred X ) (cx :  C  X) : Set (p  ) where
  constructor any
  field proof :  λ p  P (proj₂ cx p)

module _ {s₁ p₁ s₂ p₂} {C : Container s₁ p₁} {D : Container s₂ p₂}
         {x  ℓ′} {X : Set x} {P : Pred X } {Q : Pred X ℓ′}
         where

  map : (f : C  D)  P  Q   D P ∘′  f    C Q
  map f P⊆Q (any (p , P)) .◇.proof = f .position p , P⊆Q P


module _ {s₁ p₁ s₂ p₂} {C : Container s₁ p₁} {D : Container s₂ p₂}
         {x } {X : Set x} {P : Pred X }
         where

  map₁ : (f : C  D)   D P ∘′  f    C P
  map₁ f = map f id


module _ {s p} {C : Container s p}
         {x  ℓ′} {X : Set x} {P : Pred X } {Q : Pred X ℓ′}
         where

  map₂ : P  Q   C P   C Q
  map₂ = map (M.id C)