{-# OPTIONS --without-K --safe #-}
module Data.Fin.Properties where
open import Axiom.Extensionality.Propositional
open import Algebra.Definitions using (Involutive)
open import Effect.Applicative using (RawApplicative)
open import Effect.Functor using (RawFunctor)
open import Data.Bool.Base using (Bool; true; false; not; _∧_; _∨_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Fin.Base
open import Data.Fin.Patterns
open import Data.Nat.Base as ℕ using (ℕ; zero; suc; s≤s; z≤n; z<s; s<s; _∸_; _^_)
import Data.Nat.Properties as ℕₚ
open import Data.Nat.Solver
open import Data.Unit using (⊤; tt)
open import Data.Product using (Σ-syntax; ∃; ∃₂; ∄; _×_; _,_; map; proj₁; proj₂; uncurry; <_,_>)
open import Data.Product.Properties using (,-injective)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]; [_,_]′)
open import Data.Sum.Properties using ([,]-map-commute; [,]-∘-distr)
open import Function.Base using (_∘_; id; _$_; flip)
open import Function.Bundles using (Injection; _↣_; _⇔_; _↔_; mk⇔; mk↔′)
open import Function.Definitions using (Injective)
open import Function.Definitions.Core2 using (Surjective)
open import Function.Consequences using (contraInjective)
open import Function.Construct.Composition as Comp hiding (injective)
open import Level using (Level)
open import Relation.Binary as B hiding (Decidable; _⇔_)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; sym; trans; cong; cong₂; subst; _≗_; module ≡-Reasoning)
open import Relation.Nullary.Decidable as Dec using (map′)
open import Relation.Nullary.Reflects
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Nullary
using (Reflects; ofʸ; ofⁿ; Dec; _because_; does; proof; yes; no; ¬_)
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Nullary.Sum using (_⊎-dec_)
open import Relation.Unary as U
using (U; Pred; Decidable; _⊆_; Satisfiable; Universal)
open import Relation.Unary.Properties using (U?)
private
variable
a : Level
A : Set a
m n o : ℕ
i j : Fin n
¬Fin0 : ¬ Fin 0
¬Fin0 ()
0↔⊥ : Fin 0 ↔ ⊥
0↔⊥ = mk↔′ ¬Fin0 (λ ()) (λ ()) (λ ())
1↔⊤ : Fin 1 ↔ ⊤
1↔⊤ = mk↔′ (λ { 0F → tt }) (λ { tt → 0F }) (λ { tt → refl }) λ { 0F → refl }
0≢1+n : zero ≢ Fin.suc i
0≢1+n ()
suc-injective : Fin.suc i ≡ suc j → i ≡ j
suc-injective refl = refl
infix 4 _≟_
_≟_ : DecidableEquality (Fin n)
zero ≟ zero = yes refl
zero ≟ suc y = no λ()
suc x ≟ zero = no λ()
suc x ≟ suc y = map′ (cong suc) suc-injective (x ≟ y)
≡-isDecEquivalence : IsDecEquivalence {A = Fin n} _≡_
≡-isDecEquivalence = record
{ isEquivalence = P.isEquivalence
; _≟_ = _≟_
}
≡-preorder : ℕ → Preorder _ _ _
≡-preorder n = P.preorder (Fin n)
≡-setoid : ℕ → Setoid _ _
≡-setoid n = P.setoid (Fin n)
≡-decSetoid : ℕ → DecSetoid _ _
≡-decSetoid n = record
{ isDecEquivalence = ≡-isDecEquivalence {n}
}
toℕ-injective : toℕ i ≡ toℕ j → i ≡ j
toℕ-injective {zero} {} {} _
toℕ-injective {suc n} {zero} {zero} eq = refl
toℕ-injective {suc n} {suc i} {suc j} eq =
cong suc (toℕ-injective (cong ℕ.pred eq))
toℕ-strengthen : ∀ (i : Fin n) → toℕ (strengthen i) ≡ toℕ i
toℕ-strengthen zero = refl
toℕ-strengthen (suc i) = cong suc (toℕ-strengthen i)
toℕ-↑ˡ : ∀ (i : Fin m) n → toℕ (i ↑ˡ n) ≡ toℕ i
toℕ-↑ˡ zero n = refl
toℕ-↑ˡ (suc i) n = cong suc (toℕ-↑ˡ i n)
↑ˡ-injective : ∀ n (i j : Fin m) → i ↑ˡ n ≡ j ↑ˡ n → i ≡ j
↑ˡ-injective n zero zero refl = refl
↑ˡ-injective n (suc i) (suc j) eq =
cong suc (↑ˡ-injective n i j (suc-injective eq))
toℕ-↑ʳ : ∀ n (i : Fin m) → toℕ (n ↑ʳ i) ≡ n ℕ.+ toℕ i
toℕ-↑ʳ zero i = refl
toℕ-↑ʳ (suc n) i = cong suc (toℕ-↑ʳ n i)
↑ʳ-injective : ∀ n (i j : Fin m) → n ↑ʳ i ≡ n ↑ʳ j → i ≡ j
↑ʳ-injective zero i i refl = refl
↑ʳ-injective (suc n) i j eq = ↑ʳ-injective n i j (suc-injective eq)
toℕ≤pred[n] : ∀ (i : Fin n) → toℕ i ℕ.≤ ℕ.pred n
toℕ≤pred[n] zero = z≤n
toℕ≤pred[n] (suc {n = suc n} i) = s≤s (toℕ≤pred[n] i)
toℕ≤n : ∀ (i : Fin n) → toℕ i ℕ.≤ n
toℕ≤n {suc n} i = ℕₚ.≤-step (toℕ≤pred[n] i)
toℕ<n : ∀ (i : Fin n) → toℕ i ℕ.< n
toℕ<n {suc n} i = s≤s (toℕ≤pred[n] i)
toℕ≤pred[n]′ : ∀ (i : Fin n) → toℕ i ℕ.≤ ℕ.pred n
toℕ≤pred[n]′ i = ℕₚ.<⇒≤pred (toℕ<n i)
toℕ-mono-< : i < j → toℕ i ℕ.< toℕ j
toℕ-mono-< i<j = i<j
toℕ-mono-≤ : i ≤ j → toℕ i ℕ.≤ toℕ j
toℕ-mono-≤ i≤j = i≤j
toℕ-cancel-≤ : toℕ i ℕ.≤ toℕ j → i ≤ j
toℕ-cancel-≤ i≤j = i≤j
toℕ-cancel-< : toℕ i ℕ.< toℕ j → i < j
toℕ-cancel-< i<j = i<j
toℕ-fromℕ : ∀ n → toℕ (fromℕ n) ≡ n
toℕ-fromℕ zero = refl
toℕ-fromℕ (suc n) = cong suc (toℕ-fromℕ n)
fromℕ-toℕ : ∀ (i : Fin n) → fromℕ (toℕ i) ≡ strengthen i
fromℕ-toℕ zero = refl
fromℕ-toℕ (suc i) = cong suc (fromℕ-toℕ i)
≤fromℕ : ∀ (i : Fin (ℕ.suc n)) → i ≤ fromℕ n
≤fromℕ i = subst (toℕ i ℕ.≤_) (sym (toℕ-fromℕ _)) (toℕ≤pred[n] i)
fromℕ<-toℕ : ∀ (i : Fin n) (i<n : toℕ i ℕ.< n) → fromℕ< i<n ≡ i
fromℕ<-toℕ zero z<s = refl
fromℕ<-toℕ (suc i) (s<s i<n) = cong suc (fromℕ<-toℕ i i<n)
toℕ-fromℕ< : ∀ (m<n : m ℕ.< n) → toℕ (fromℕ< m<n) ≡ m
toℕ-fromℕ< z<s = refl
toℕ-fromℕ< (s<s m<n@(s≤s _)) = cong suc (toℕ-fromℕ< m<n)
fromℕ-def : ∀ n → fromℕ n ≡ fromℕ< ℕₚ.≤-refl
fromℕ-def zero = refl
fromℕ-def (suc n) = cong suc (fromℕ-def n)
fromℕ<-cong : ∀ m n {o} → m ≡ n → (m<o : m ℕ.< o) (n<o : n ℕ.< o) →
fromℕ< m<o ≡ fromℕ< n<o
fromℕ<-cong 0 0 r z<s z<s = refl
fromℕ<-cong (suc _) (suc _) r (s<s m<n) (s<s n<o)
= cong suc (fromℕ<-cong _ _ (ℕₚ.suc-injective r) m<n n<o)
fromℕ<-injective : ∀ m n {o} → (m<o : m ℕ.< o) (n<o : n ℕ.< o) →
fromℕ< m<o ≡ fromℕ< n<o → m ≡ n
fromℕ<-injective 0 0 z<s z<s r = refl
fromℕ<-injective (suc _) (suc _) (s<s m<n@(s≤s _)) (s<s n<o@(s≤s _)) r
= cong suc (fromℕ<-injective _ _ m<n n<o (suc-injective r))
fromℕ<≡fromℕ<″ : ∀ (m<n : m ℕ.< n) (m<″n : m ℕ.<″ n) →
fromℕ< m<n ≡ fromℕ<″ m m<″n
fromℕ<≡fromℕ<″ z<s (ℕ.less-than-or-equal refl) = refl
fromℕ<≡fromℕ<″ (s<s m<n@(s≤s _)) (ℕ.less-than-or-equal refl) =
cong suc (fromℕ<≡fromℕ<″ m<n (ℕ.less-than-or-equal refl))
toℕ-fromℕ<″ : ∀ (m<n : m ℕ.<″ n) → toℕ (fromℕ<″ m m<n) ≡ m
toℕ-fromℕ<″ {m} {n} m<n = begin
toℕ (fromℕ<″ m m<n) ≡⟨ cong toℕ (sym (fromℕ<≡fromℕ<″ (ℕₚ.≤″⇒≤ m<n) m<n)) ⟩
toℕ (fromℕ< _) ≡⟨ toℕ-fromℕ< (ℕₚ.≤″⇒≤ m<n) ⟩
m ∎
where open ≡-Reasoning
toℕ-cast : ∀ .(eq : m ≡ n) (k : Fin m) → toℕ (cast eq k) ≡ toℕ k
toℕ-cast {n = suc n} eq zero = refl
toℕ-cast {n = suc n} eq (suc k) = cong suc (toℕ-cast (cong ℕ.pred eq) k)
≤-reflexive : _≡_ ⇒ (_≤_ {n})
≤-reflexive refl = ℕₚ.≤-refl
≤-refl : Reflexive (_≤_ {n})
≤-refl = ≤-reflexive refl
≤-trans : Transitive (_≤_ {n})
≤-trans = ℕₚ.≤-trans
≤-antisym : Antisymmetric _≡_ (_≤_ {n})
≤-antisym x≤y y≤x = toℕ-injective (ℕₚ.≤-antisym x≤y y≤x)
≤-total : Total (_≤_ {n})
≤-total x y = ℕₚ.≤-total (toℕ x) (toℕ y)
≤-irrelevant : Irrelevant (_≤_ {m} {n})
≤-irrelevant = ℕₚ.≤-irrelevant
infix 4 _≤?_ _<?_
_≤?_ : B.Decidable (_≤_ {m} {n})
a ≤? b = toℕ a ℕₚ.≤? toℕ b
_<?_ : B.Decidable (_<_ {m} {n})
m <? n = suc (toℕ m) ℕₚ.≤? toℕ n
≤-isPreorder : IsPreorder {A = Fin n} _≡_ _≤_
≤-isPreorder = record
{ isEquivalence = P.isEquivalence
; reflexive = ≤-reflexive
; trans = ≤-trans
}
≤-isPartialOrder : IsPartialOrder {A = Fin n} _≡_ _≤_
≤-isPartialOrder = record
{ isPreorder = ≤-isPreorder
; antisym = ≤-antisym
}
≤-isTotalOrder : IsTotalOrder {A = Fin n} _≡_ _≤_
≤-isTotalOrder = record
{ isPartialOrder = ≤-isPartialOrder
; total = ≤-total
}
≤-isDecTotalOrder : IsDecTotalOrder {A = Fin n} _≡_ _≤_
≤-isDecTotalOrder = record
{ isTotalOrder = ≤-isTotalOrder
; _≟_ = _≟_
; _≤?_ = _≤?_
}
≤-preorder : ℕ → Preorder _ _ _
≤-preorder n = record
{ isPreorder = ≤-isPreorder {n}
}
≤-poset : ℕ → Poset _ _ _
≤-poset n = record
{ isPartialOrder = ≤-isPartialOrder {n}
}
≤-totalOrder : ℕ → TotalOrder _ _ _
≤-totalOrder n = record
{ isTotalOrder = ≤-isTotalOrder {n}
}
≤-decTotalOrder : ℕ → DecTotalOrder _ _ _
≤-decTotalOrder n = record
{ isDecTotalOrder = ≤-isDecTotalOrder {n}
}
<-irrefl : Irreflexive _≡_ (_<_ {n})
<-irrefl refl = ℕₚ.<-irrefl refl
<-asym : Asymmetric (_<_ {n})
<-asym = ℕₚ.<-asym
<-trans : Transitive (_<_ {n})
<-trans = ℕₚ.<-trans
<-cmp : Trichotomous _≡_ (_<_ {n})
<-cmp zero zero = tri≈ (λ()) refl (λ())
<-cmp zero (suc j) = tri< z<s (λ()) (λ())
<-cmp (suc i) zero = tri> (λ()) (λ()) z<s
<-cmp (suc i) (suc j) with <-cmp i j
... | tri< i<j i≢j j≮i = tri< (s<s i<j) (i≢j ∘ suc-injective) (j≮i ∘ ℕₚ.≤-pred)
... | tri> i≮j i≢j j<i = tri> (i≮j ∘ ℕₚ.≤-pred) (i≢j ∘ suc-injective) (s<s j<i)
... | tri≈ i≮j i≡j j≮i = tri≈ (i≮j ∘ ℕₚ.≤-pred) (cong suc i≡j) (j≮i ∘ ℕₚ.≤-pred)
<-respˡ-≡ : (_<_ {m} {n}) Respectsˡ _≡_
<-respˡ-≡ refl x≤y = x≤y
<-respʳ-≡ : (_<_ {m} {n}) Respectsʳ _≡_
<-respʳ-≡ refl x≤y = x≤y
<-resp₂-≡ : (_<_ {n}) Respects₂ _≡_
<-resp₂-≡ = <-respʳ-≡ , <-respˡ-≡
<-irrelevant : Irrelevant (_<_ {m} {n})
<-irrelevant = ℕₚ.<-irrelevant
<-isStrictPartialOrder : IsStrictPartialOrder {A = Fin n} _≡_ _<_
<-isStrictPartialOrder = record
{ isEquivalence = P.isEquivalence
; irrefl = <-irrefl
; trans = <-trans
; <-resp-≈ = <-resp₂-≡
}
<-isStrictTotalOrder : IsStrictTotalOrder {A = Fin n} _≡_ _<_
<-isStrictTotalOrder = record
{ isEquivalence = P.isEquivalence
; trans = <-trans
; compare = <-cmp
}
<-strictPartialOrder : ℕ → StrictPartialOrder _ _ _
<-strictPartialOrder n = record
{ isStrictPartialOrder = <-isStrictPartialOrder {n}
}
<-strictTotalOrder : ℕ → StrictTotalOrder _ _ _
<-strictTotalOrder n = record
{ isStrictTotalOrder = <-isStrictTotalOrder {n}
}
i<1+i : ∀ (i : Fin n) → i < suc i
i<1+i = ℕₚ.n<1+n ∘ toℕ
<⇒≢ : i < j → i ≢ j
<⇒≢ i<i refl = ℕₚ.n≮n _ i<i
≤∧≢⇒< : i ≤ j → i ≢ j → i < j
≤∧≢⇒< {i = zero} {zero} _ 0≢0 = contradiction refl 0≢0
≤∧≢⇒< {i = zero} {suc j} _ _ = z<s
≤∧≢⇒< {i = suc i} {suc j} (s≤s i≤j) 1+i≢1+j =
s<s (≤∧≢⇒< i≤j (1+i≢1+j ∘ (cong suc)))
toℕ-inject : ∀ {i : Fin n} (j : Fin′ i) → toℕ (inject j) ≡ toℕ j
toℕ-inject {i = suc i} zero = refl
toℕ-inject {i = suc i} (suc j) = cong suc (toℕ-inject j)
inject₁-injective : inject₁ i ≡ inject₁ j → i ≡ j
inject₁-injective {i = zero} {zero} i≡j = refl
inject₁-injective {i = suc i} {suc j} i≡j =
cong suc (inject₁-injective (suc-injective i≡j))
toℕ-inject₁ : ∀ (i : Fin n) → toℕ (inject₁ i) ≡ toℕ i
toℕ-inject₁ zero = refl
toℕ-inject₁ (suc i) = cong suc (toℕ-inject₁ i)
toℕ-inject₁-≢ : ∀ (i : Fin n) → n ≢ toℕ (inject₁ i)
toℕ-inject₁-≢ (suc i) = toℕ-inject₁-≢ i ∘ ℕₚ.suc-injective
inject₁ℕ< : ∀ (i : Fin n) → toℕ (inject₁ i) ℕ.< n
inject₁ℕ< i rewrite toℕ-inject₁ i = toℕ<n i
inject₁ℕ≤ : ∀ (i : Fin n) → toℕ (inject₁ i) ℕ.≤ n
inject₁ℕ≤ = ℕₚ.<⇒≤ ∘ inject₁ℕ<
≤̄⇒inject₁< : i ≤ j → inject₁ i < suc j
≤̄⇒inject₁< {i = i} i≤j rewrite sym (toℕ-inject₁ i) = s<s i≤j
ℕ<⇒inject₁< : ∀ {i : Fin (ℕ.suc n)} {j : Fin n} → j < i → inject₁ j < i
ℕ<⇒inject₁< {i = suc i} (s≤s j≤i) = ≤̄⇒inject₁< j≤i
toℕ-lower₁ : ∀ i (p : n ≢ toℕ i) → toℕ (lower₁ i p) ≡ toℕ i
toℕ-lower₁ {ℕ.zero} zero p = contradiction refl p
toℕ-lower₁ {ℕ.suc m} zero p = refl
toℕ-lower₁ {ℕ.suc m} (suc i) p = cong ℕ.suc (toℕ-lower₁ i (p ∘ cong ℕ.suc))
lower₁-injective : ∀ {n≢i : n ≢ toℕ i} {n≢j : n ≢ toℕ j} →
lower₁ i n≢i ≡ lower₁ j n≢j → i ≡ j
lower₁-injective {zero} {zero} {_} {n≢i} {_} _ = ⊥-elim (n≢i refl)
lower₁-injective {zero} {_} {zero} {_} {n≢j} _ = ⊥-elim (n≢j refl)
lower₁-injective {suc n} {zero} {zero} {_} {_} refl = refl
lower₁-injective {suc n} {suc i} {suc j} {n≢i} {n≢j} eq =
cong suc (lower₁-injective (suc-injective eq))
inject₁-lower₁ : ∀ (i : Fin (suc n)) (n≢i : n ≢ toℕ i) →
inject₁ (lower₁ i n≢i) ≡ i
inject₁-lower₁ {zero} zero 0≢0 = contradiction refl 0≢0
inject₁-lower₁ {suc n} zero _ = refl
inject₁-lower₁ {suc n} (suc i) n+1≢i+1 =
cong suc (inject₁-lower₁ i (n+1≢i+1 ∘ cong suc))
lower₁-inject₁′ : ∀ (i : Fin n) (n≢i : n ≢ toℕ (inject₁ i)) →
lower₁ (inject₁ i) n≢i ≡ i
lower₁-inject₁′ zero _ = refl
lower₁-inject₁′ (suc i) n+1≢i+1 =
cong suc (lower₁-inject₁′ i (n+1≢i+1 ∘ cong suc))
lower₁-inject₁ : ∀ (i : Fin n) →
lower₁ (inject₁ i) (toℕ-inject₁-≢ i) ≡ i
lower₁-inject₁ i = lower₁-inject₁′ i (toℕ-inject₁-≢ i)
lower₁-irrelevant : ∀ (i : Fin (suc n)) (n≢i₁ n≢i₂ : n ≢ toℕ i) →
lower₁ i n≢i₁ ≡ lower₁ i n≢i₂
lower₁-irrelevant {zero} zero 0≢0 _ = contradiction refl 0≢0
lower₁-irrelevant {suc n} zero _ _ = refl
lower₁-irrelevant {suc n} (suc i) _ _ =
cong suc (lower₁-irrelevant i _ _)
inject₁≡⇒lower₁≡ : ∀ {i : Fin n} {j : Fin (ℕ.suc n)} →
(n≢j : n ≢ toℕ j) → inject₁ i ≡ j → lower₁ j n≢j ≡ i
inject₁≡⇒lower₁≡ n≢j i≡j = inject₁-injective (trans (inject₁-lower₁ _ n≢j) (sym i≡j))
toℕ-inject≤ : ∀ i (m≤n : m ℕ.≤ n) → toℕ (inject≤ i m≤n) ≡ toℕ i
toℕ-inject≤ {_} {suc n} zero _ = refl
toℕ-inject≤ {_} {suc n} (suc i) (s≤s m≤n) = cong suc (toℕ-inject≤ i m≤n)
inject≤-refl : ∀ i (n≤n : n ℕ.≤ n) → inject≤ i n≤n ≡ i
inject≤-refl {suc n} zero _ = refl
inject≤-refl {suc n} (suc i) (s≤s n≤n) = cong suc (inject≤-refl i n≤n)
inject≤-idempotent : ∀ (i : Fin m)
(m≤n : m ℕ.≤ n) (n≤o : n ℕ.≤ o) (m≤o : m ℕ.≤ o) →
inject≤ (inject≤ i m≤n) n≤o ≡ inject≤ i m≤o
inject≤-idempotent {_} {suc n} {suc o} zero _ _ _ = refl
inject≤-idempotent {_} {suc n} {suc o} (suc i) (s≤s m≤n) (s≤s n≤o) (s≤s m≤o) =
cong suc (inject≤-idempotent i m≤n n≤o m≤o)
inject≤-injective : ∀ (m≤n m≤n′ : m ℕ.≤ n) i j →
inject≤ i m≤n ≡ inject≤ j m≤n′ → i ≡ j
inject≤-injective (s≤s p) (s≤s q) zero zero eq = refl
inject≤-injective (s≤s p) (s≤s q) (suc i) (suc j) eq =
cong suc (inject≤-injective p q i j (suc-injective eq))
pred< : ∀ (i : Fin (suc n)) → i ≢ zero → pred i < i
pred< zero i≢0 = contradiction refl i≢0
pred< (suc i) _ = ≤̄⇒inject₁< ℕₚ.≤-refl
splitAt-↑ˡ : ∀ m i n → splitAt m (i ↑ˡ n) ≡ inj₁ i
splitAt-↑ˡ (suc m) zero n = refl
splitAt-↑ˡ (suc m) (suc i) n rewrite splitAt-↑ˡ m i n = refl
splitAt-↑ʳ : ∀ m n i → splitAt m (m ↑ʳ i) ≡ inj₂ {B = Fin n} i
splitAt-↑ʳ zero n i = refl
splitAt-↑ʳ (suc m) n i rewrite splitAt-↑ʳ m n i = refl
splitAt-join : ∀ m n i → splitAt m (join m n i) ≡ i
splitAt-join m n (inj₁ x) = splitAt-↑ˡ m x n
splitAt-join m n (inj₂ y) = splitAt-↑ʳ m n y
join-splitAt : ∀ m n i → join m n (splitAt m i) ≡ i
join-splitAt zero n i = refl
join-splitAt (suc m) n zero = refl
join-splitAt (suc m) n (suc i) = begin
[ _↑ˡ n , (suc m) ↑ʳ_ ]′ (splitAt (suc m) (suc i)) ≡⟨ [,]-map-commute (splitAt m i) ⟩
[ suc ∘ (_↑ˡ n) , suc ∘ (m ↑ʳ_) ]′ (splitAt m i) ≡˘⟨ [,]-∘-distr suc (splitAt m i) ⟩
suc ([ _↑ˡ n , m ↑ʳ_ ]′ (splitAt m i)) ≡⟨ cong suc (join-splitAt m n i) ⟩
suc i ∎
where open ≡-Reasoning
splitAt-< : ∀ m {n} (i : Fin (m ℕ.+ n)) (i<m : toℕ i ℕ.< m) →
splitAt m i ≡ inj₁ (fromℕ< i<m)
splitAt-< (suc m) zero z<s = refl
splitAt-< (suc m) (suc i) (s<s i<m) = cong (Sum.map suc id) (splitAt-< m i i<m)
splitAt-≥ : ∀ m {n} (i : Fin (m ℕ.+ n)) (i≥m : toℕ i ℕ.≥ m) →
splitAt m i ≡ inj₂ (reduce≥ i i≥m)
splitAt-≥ zero i _ = refl
splitAt-≥ (suc m) (suc i) (s≤s i≥m) = cong (Sum.map suc id) (splitAt-≥ m i i≥m)
+↔⊎ : Fin (m ℕ.+ n) ↔ (Fin m ⊎ Fin n)
+↔⊎ {m} {n} = mk↔′ (splitAt m {n}) (join m n) (splitAt-join m n) (join-splitAt m n)
remQuot-combine : ∀ {n k} (i : Fin n) j → remQuot k (combine i j) ≡ (i , j)
remQuot-combine {suc n} {k} zero j rewrite splitAt-↑ˡ k j (n ℕ.* k) = refl
remQuot-combine {suc n} {k} (suc i) j rewrite splitAt-↑ʳ k (n ℕ.* k) (combine i j) =
cong (Data.Product.map₁ suc) (remQuot-combine i j)
combine-remQuot : ∀ {n} k (i : Fin (n ℕ.* k)) → uncurry combine (remQuot {n} k i) ≡ i
combine-remQuot {suc n} k i with splitAt k i | P.inspect (splitAt k) i
... | inj₁ j | P.[ eq ] = begin
join k (n ℕ.* k) (inj₁ j) ≡˘⟨ cong (join k (n ℕ.* k)) eq ⟩
join k (n ℕ.* k) (splitAt k i) ≡⟨ join-splitAt k (n ℕ.* k) i ⟩
i ∎
where open ≡-Reasoning
... | inj₂ j | P.[ eq ] = begin
k ↑ʳ (uncurry combine (remQuot {n} k j)) ≡⟨ cong (k ↑ʳ_) (combine-remQuot {n} k j) ⟩
join k (n ℕ.* k) (inj₂ j) ≡˘⟨ cong (join k (n ℕ.* k)) eq ⟩
join k (n ℕ.* k) (splitAt k i) ≡⟨ join-splitAt k (n ℕ.* k) i ⟩
i ∎
where open ≡-Reasoning
toℕ-combine : ∀ (i : Fin m) (j : Fin n) → toℕ (combine i j) ≡ n ℕ.* toℕ i ℕ.+ toℕ j
toℕ-combine {suc m} {n} i@0F j = begin
toℕ (combine i j) ≡⟨⟩
toℕ (j ↑ˡ (m ℕ.* n)) ≡⟨ toℕ-↑ˡ j (m ℕ.* n) ⟩
toℕ j ≡⟨⟩
0 ℕ.+ toℕ j ≡˘⟨ cong (ℕ._+ toℕ j) (ℕₚ.*-zeroʳ n) ⟩
n ℕ.* toℕ i ℕ.+ toℕ j ∎
where open ≡-Reasoning
toℕ-combine {suc m} {n} (suc i) j = begin
toℕ (combine (suc i) j) ≡⟨⟩
toℕ (n ↑ʳ combine i j) ≡⟨ toℕ-↑ʳ n (combine i j) ⟩
n ℕ.+ toℕ (combine i j) ≡⟨ cong (n ℕ.+_) (toℕ-combine i j) ⟩
n ℕ.+ (n ℕ.* toℕ i ℕ.+ toℕ j) ≡⟨ solve 3 (λ n i j → n :+ (n :* i :+ j) := n :* (con 1 :+ i) :+ j) refl n (toℕ i) (toℕ j) ⟩
n ℕ.* toℕ (suc i) ℕ.+ toℕ j ∎
where open ≡-Reasoning; open +-*-Solver
combine-monoˡ-< : ∀ {i j : Fin m} (k l : Fin n) →
i < j → combine i k < combine j l
combine-monoˡ-< {m} {n} {i} {j} k l i<j = begin-strict
toℕ (combine i k) ≡⟨ toℕ-combine i k ⟩
n ℕ.* toℕ i ℕ.+ toℕ k <⟨ ℕₚ.+-monoʳ-< (n ℕ.* toℕ i) (toℕ<n k) ⟩
n ℕ.* toℕ i ℕ.+ n ≡⟨ ℕₚ.+-comm _ n ⟩
n ℕ.+ n ℕ.* toℕ i ≡⟨ cong (n ℕ.+_) (ℕₚ.*-comm n _) ⟩
n ℕ.+ toℕ i ℕ.* n ≡⟨ ℕₚ.*-comm (suc (toℕ i)) n ⟩
n ℕ.* suc (toℕ i) ≤⟨ ℕₚ.*-monoʳ-≤ n (toℕ-mono-< i<j) ⟩
n ℕ.* toℕ j ≤⟨ ℕₚ.m≤m+n (n ℕ.* toℕ j) (toℕ l) ⟩
n ℕ.* toℕ j ℕ.+ toℕ l ≡˘⟨ toℕ-combine j l ⟩
toℕ (combine j l) ∎
where open ℕₚ.≤-Reasoning; open +-*-Solver
combine-injectiveˡ : ∀ (i : Fin m) (j : Fin n) (k : Fin m) (l : Fin n) →
combine i j ≡ combine k l → i ≡ k
combine-injectiveˡ i j k l cᵢⱼ≡cₖₗ with <-cmp i k
... | tri< i<k _ _ = contradiction cᵢⱼ≡cₖₗ (<⇒≢ (combine-monoˡ-< j l i<k))
... | tri≈ _ i≡k _ = i≡k
... | tri> _ _ i>k = contradiction (sym cᵢⱼ≡cₖₗ) (<⇒≢ (combine-monoˡ-< l j i>k))
combine-injectiveʳ : ∀ (i : Fin m) (j : Fin n) (k : Fin m) (l : Fin n) →
combine i j ≡ combine k l → j ≡ l
combine-injectiveʳ {m} {n} i j k l cᵢⱼ≡cₖₗ with combine-injectiveˡ i j k l cᵢⱼ≡cₖₗ
... | refl = toℕ-injective (ℕₚ.+-cancelˡ-≡ (n ℕ.* toℕ i) (begin
n ℕ.* toℕ i ℕ.+ toℕ j ≡˘⟨ toℕ-combine i j ⟩
toℕ (combine i j) ≡⟨ cong toℕ cᵢⱼ≡cₖₗ ⟩
toℕ (combine i l) ≡⟨ toℕ-combine i l ⟩
n ℕ.* toℕ i ℕ.+ toℕ l ∎))
where open ≡-Reasoning
combine-injective : ∀ (i : Fin m) (j : Fin n) (k : Fin m) (l : Fin n) →
combine i j ≡ combine k l → i ≡ k × j ≡ l
combine-injective i j k l cᵢⱼ≡cₖₗ =
combine-injectiveˡ i j k l cᵢⱼ≡cₖₗ ,
combine-injectiveʳ i j k l cᵢⱼ≡cₖₗ
combine-surjective : ∀ (i : Fin (m ℕ.* n)) → ∃₂ λ j k → combine j k ≡ i
combine-surjective {m} {n} i with remQuot {m} n i | P.inspect (remQuot {m} n) i
... | j , k | P.[ eq ] = j , k , (begin
combine j k ≡˘⟨ uncurry (cong₂ combine) (,-injective eq) ⟩
uncurry combine (remQuot {m} n i) ≡⟨ combine-remQuot {m} n i ⟩
i ∎)
where open ≡-Reasoning
*↔× : Fin (m ℕ.* n) ↔ (Fin m × Fin n)
*↔× {m} {n} = mk↔′ (remQuot {m} n) (uncurry combine)
(uncurry remQuot-combine)
(combine-remQuot {m} n)
funToFin-finToFin : funToFin {m} {n} ∘ finToFun ≗ id
funToFin-finToFin {zero} {n} zero = refl
funToFin-finToFin {suc m} {n} k =
begin
combine (finToFun {n} {suc m} k zero) (funToFin (finToFun {n} {suc m} k ∘ suc))
≡⟨⟩
combine (quotient {n} (n ^ m) k)
(funToFin (finToFun {n} {m} (remainder {n} (n ^ m) k)))
≡⟨ cong (combine (quotient {n} (n ^ m) k))
(funToFin-finToFin {m} (remainder {n} (n ^ m) k)) ⟩
combine (quotient {n} (n ^ m) k) (remainder {n} (n ^ m) k)
≡⟨⟩
uncurry combine (remQuot {n} (n ^ m) k)
≡⟨ combine-remQuot {n = n} (n ^ m) k ⟩
k
∎ where open ≡-Reasoning
finToFun-funToFin : (f : Fin m → Fin n) → finToFun (funToFin f) ≗ f
finToFun-funToFin {suc m} {n} f zero =
begin
quotient (n ^ m) (combine (f zero) (funToFin (f ∘ suc)))
≡⟨ cong proj₁ (remQuot-combine _ _) ⟩
proj₁ (f zero , funToFin (f ∘ suc))
≡⟨⟩
f zero
∎ where open ≡-Reasoning
finToFun-funToFin {suc m} {n} f (suc i) =
begin
finToFun (remainder {n} (n ^ m) (combine (f zero) (funToFin (f ∘ suc)))) i
≡⟨ cong (λ rq → finToFun (proj₂ rq) i) (remQuot-combine {n} _ _) ⟩
finToFun (proj₂ (f zero , funToFin (f ∘ suc))) i
≡⟨⟩
finToFun (funToFin (f ∘ suc)) i
≡⟨ finToFun-funToFin (f ∘ suc) i ⟩
(f ∘ suc) i
≡⟨⟩
f (suc i)
∎ where open ≡-Reasoning
^↔→ : Extensionality _ _ → Fin (m ^ n) ↔ (Fin n → Fin m)
^↔→ {m} {n} ext = mk↔′ finToFun funToFin
(ext ∘ finToFun-funToFin)
(funToFin-finToFin {n} {m})
lift-injective : ∀ (f : Fin m → Fin n) → Injective _≡_ _≡_ f →
∀ k → Injective _≡_ _≡_ (lift k f)
lift-injective f inj zero {_} {_} eq = inj eq
lift-injective f inj (suc k) {zero} {zero} eq = refl
lift-injective f inj (suc k) {suc _} {suc _} eq =
cong suc (lift-injective f inj k (suc-injective eq))
≺⇒<′ : _≺_ ⇒ ℕ._<′_
≺⇒<′ (n ≻toℕ i) = ℕₚ.≤⇒≤′ (toℕ<n i)
<′⇒≺ : ℕ._<′_ ⇒ _≺_
<′⇒≺ {n} ℕ.≤′-refl = subst (_≺ suc n) (toℕ-fromℕ n) (suc n ≻toℕ fromℕ n)
<′⇒≺ (ℕ.≤′-step m≤′n) with <′⇒≺ m≤′n
... | n ≻toℕ i = subst (_≺ suc n) (toℕ-inject₁ i) (suc n ≻toℕ _)
<⇒≤pred : i < j → i ≤ pred j
<⇒≤pred {i = zero} {j = suc j} z<s = z≤n
<⇒≤pred {i = suc i} {j = suc j} (s<s i<j) rewrite toℕ-inject₁ j = i<j
toℕ‿ℕ- : ∀ n i → toℕ (n ℕ- i) ≡ n ∸ toℕ i
toℕ‿ℕ- n zero = toℕ-fromℕ n
toℕ‿ℕ- (suc n) (suc i) = toℕ‿ℕ- n i
nℕ-ℕi≤n : ∀ n i → n ℕ-ℕ i ℕ.≤ n
nℕ-ℕi≤n n zero = ℕₚ.≤-refl
nℕ-ℕi≤n (suc n) (suc i) = begin
n ℕ-ℕ i ≤⟨ nℕ-ℕi≤n n i ⟩
n ≤⟨ ℕₚ.n≤1+n n ⟩
suc n ∎
where open ℕₚ.≤-Reasoning
punchIn-injective : ∀ i (j k : Fin n) →
punchIn i j ≡ punchIn i k → j ≡ k
punchIn-injective zero _ _ refl = refl
punchIn-injective (suc i) zero zero _ = refl
punchIn-injective (suc i) (suc j) (suc k) ↑j+1≡↑k+1 =
cong suc (punchIn-injective i j k (suc-injective ↑j+1≡↑k+1))
punchInᵢ≢i : ∀ i (j : Fin n) → punchIn i j ≢ i
punchInᵢ≢i (suc i) (suc j) = punchInᵢ≢i i j ∘ suc-injective
punchOut-cong : ∀ (i : Fin (suc n)) {j k} {i≢j : i ≢ j} {i≢k : i ≢ k} →
j ≡ k → punchOut i≢j ≡ punchOut i≢k
punchOut-cong {_} zero {zero} {i≢j = 0≢0} = contradiction refl 0≢0
punchOut-cong {_} zero {suc j} {zero} {i≢k = 0≢0} = contradiction refl 0≢0
punchOut-cong {_} zero {suc j} {suc k} = suc-injective
punchOut-cong {suc n} (suc i) {zero} {zero} _ = refl
punchOut-cong {suc n} (suc i) {suc j} {suc k} = cong suc ∘ punchOut-cong i ∘ suc-injective
punchOut-cong′ : ∀ (i : Fin (suc n)) {j k} {p : i ≢ j} (q : j ≡ k) →
punchOut p ≡ punchOut (p ∘ sym ∘ trans q ∘ sym)
punchOut-cong′ i q = punchOut-cong i q
punchOut-injective : ∀ {i j k : Fin (suc n)}
(i≢j : i ≢ j) (i≢k : i ≢ k) →
punchOut i≢j ≡ punchOut i≢k → j ≡ k
punchOut-injective {_} {zero} {zero} {_} 0≢0 _ _ = contradiction refl 0≢0
punchOut-injective {_} {zero} {_} {zero} _ 0≢0 _ = contradiction refl 0≢0
punchOut-injective {_} {zero} {suc j} {suc k} _ _ pⱼ≡pₖ = cong suc pⱼ≡pₖ
punchOut-injective {suc n} {suc i} {zero} {zero} _ _ _ = refl
punchOut-injective {suc n} {suc i} {suc j} {suc k} i≢j i≢k pⱼ≡pₖ =
cong suc (punchOut-injective (i≢j ∘ cong suc) (i≢k ∘ cong suc) (suc-injective pⱼ≡pₖ))
punchIn-punchOut : ∀ {i j : Fin (suc n)} (i≢j : i ≢ j) →
punchIn i (punchOut i≢j) ≡ j
punchIn-punchOut {_} {zero} {zero} 0≢0 = contradiction refl 0≢0
punchIn-punchOut {_} {zero} {suc j} _ = refl
punchIn-punchOut {suc m} {suc i} {zero} i≢j = refl
punchIn-punchOut {suc m} {suc i} {suc j} i≢j =
cong suc (punchIn-punchOut (i≢j ∘ cong suc))
punchOut-punchIn : ∀ i {j : Fin n} → punchOut {i = i} {j = punchIn i j} (punchInᵢ≢i i j ∘ sym) ≡ j
punchOut-punchIn zero {j} = refl
punchOut-punchIn (suc i) {zero} = refl
punchOut-punchIn (suc i) {suc j} = cong suc (begin
punchOut (punchInᵢ≢i i j ∘ suc-injective ∘ sym ∘ cong suc) ≡⟨ punchOut-cong i refl ⟩
punchOut (punchInᵢ≢i i j ∘ sym) ≡⟨ punchOut-punchIn i ⟩
j ∎)
where open ≡-Reasoning
pinch-surjective : ∀ (i : Fin n) → Surjective _≡_ (pinch i)
pinch-surjective _ zero = zero , refl
pinch-surjective zero (suc j) = suc (suc j) , refl
pinch-surjective (suc i) (suc j) = map suc (cong suc) (pinch-surjective i j)
pinch-mono-≤ : ∀ (i : Fin n) → (pinch i) Preserves _≤_ ⟶ _≤_
pinch-mono-≤ 0F {0F} {k} 0≤n = z≤n
pinch-mono-≤ 0F {suc j} {suc k} (s≤s j≤k) = j≤k
pinch-mono-≤ (suc i) {0F} {k} 0≤n = z≤n
pinch-mono-≤ (suc i) {suc j} {suc k} (s≤s j≤k) = s≤s (pinch-mono-≤ i j≤k)
pinch-injective : ∀ {i : Fin n} {j k : Fin (ℕ.suc n)} →
suc i ≢ j → suc i ≢ k → pinch i j ≡ pinch i k → j ≡ k
pinch-injective {i = i} {zero} {zero} _ _ _ = refl
pinch-injective {i = zero} {zero} {suc k} _ 1+i≢k eq =
contradiction (cong suc eq) 1+i≢k
pinch-injective {i = zero} {suc j} {zero} 1+i≢j _ eq =
contradiction (cong suc (sym eq)) 1+i≢j
pinch-injective {i = zero} {suc j} {suc k} _ _ eq =
cong suc eq
pinch-injective {i = suc i} {suc j} {suc k} 1+i≢j 1+i≢k eq =
cong suc
(pinch-injective (1+i≢j ∘ cong suc) (1+i≢k ∘ cong suc)
(suc-injective eq))
module _ {p} {P : Pred (Fin (suc n)) p} where
∀-cons : P zero → Π[ P ∘ suc ] → Π[ P ]
∀-cons z s zero = z
∀-cons z s (suc i) = s i
∀-cons-⇔ : (P zero × Π[ P ∘ suc ]) ⇔ Π[ P ]
∀-cons-⇔ = mk⇔ (uncurry ∀-cons) < _$ zero , _∘ suc >
∃-here : P zero → ∃⟨ P ⟩
∃-here = zero ,_
∃-there : ∃⟨ P ∘ suc ⟩ → ∃⟨ P ⟩
∃-there = map suc id
∃-toSum : ∃⟨ P ⟩ → P zero ⊎ ∃⟨ P ∘ suc ⟩
∃-toSum ( zero , P₀ ) = inj₁ P₀
∃-toSum (suc f , P₁₊) = inj₂ (f , P₁₊)
⊎⇔∃ : (P zero ⊎ ∃⟨ P ∘ suc ⟩) ⇔ ∃⟨ P ⟩
⊎⇔∃ = mk⇔ [ ∃-here , ∃-there ] ∃-toSum
decFinSubset : ∀ {p q} {P : Pred (Fin n) p} {Q : Pred (Fin n) q} →
Decidable Q → (∀ {i} → Q i → Dec (P i)) → Dec (Q ⊆ P)
decFinSubset {zero} {_} {_} Q? P? = yes λ {}
decFinSubset {suc n} {P = P} {Q} Q? P?
with Q? zero | ∀-cons {P = λ x → Q x → P x}
... | false because [¬Q0] | cons =
map′ (λ f {x} → cons (⊥-elim ∘ invert [¬Q0]) (λ x → f {x}) x)
(λ f {x} → f {suc x})
(decFinSubset (Q? ∘ suc) P?)
... | true because [Q0] | cons =
map′ (uncurry λ P0 rec {x} → cons (λ _ → P0) (λ x → rec {x}) x)
< _$ invert [Q0] , (λ f {x} → f {suc x}) >
(P? (invert [Q0]) ×-dec decFinSubset (Q? ∘ suc) P?)
any? : ∀ {p} {P : Pred (Fin n) p} → Decidable P → Dec (∃ P)
any? {zero} {P = _} P? = no λ { (() , _) }
any? {suc n} {P = P} P? = Dec.map ⊎⇔∃ (P? zero ⊎-dec any? (P? ∘ suc))
all? : ∀ {p} {P : Pred (Fin n) p} → Decidable P → Dec (∀ f → P f)
all? P? = map′ (λ ∀p f → ∀p tt) (λ ∀p {x} _ → ∀p x)
(decFinSubset U? (λ {f} _ → P? f))
private
note : ∀ {p} {P : Pred (Fin 3) p} (P? : Decidable P) →
∃ λ z → does (all? P?) ≡ z
note P? = does (P? 0F) ∧ does (P? 1F) ∧ does (P? 2F) ∧ true
, refl
¬∀⟶∃¬-smallest : ∀ n {p} (P : Pred (Fin n) p) → Decidable P →
¬ (∀ i → P i) → ∃ λ i → ¬ P i × ((j : Fin′ i) → P (inject j))
¬∀⟶∃¬-smallest zero P P? ¬∀P = contradiction (λ()) ¬∀P
¬∀⟶∃¬-smallest (suc n) P P? ¬∀P with P? zero
... | false because [¬P₀] = (zero , invert [¬P₀] , λ ())
... | true because [P₀] = map suc (map id (∀-cons (invert [P₀])))
(¬∀⟶∃¬-smallest n (P ∘ suc) (P? ∘ suc) (¬∀P ∘ (∀-cons (invert [P₀]))))
¬∀⟶∃¬ : ∀ n {p} (P : Pred (Fin n) p) → Decidable P →
¬ (∀ i → P i) → (∃ λ i → ¬ P i)
¬∀⟶∃¬ n P P? ¬P = map id proj₁ (¬∀⟶∃¬-smallest n P P? ¬P)
pigeonhole : m ℕ.< n → (f : Fin n → Fin m) → ∃₂ λ i j → i < j × f i ≡ f j
pigeonhole z<s f = contradiction (f zero) λ()
pigeonhole (s<s m<n@(s≤s _)) f with any? (λ k → f zero ≟ f (suc k))
... | yes (j , f₀≡fⱼ) = zero , suc j , z<s , f₀≡fⱼ
... | no f₀≢fₖ with pigeonhole m<n (λ j → punchOut (f₀≢fₖ ∘ (j ,_ )))
... | (i , j , i<j , fᵢ≡fⱼ) =
suc i , suc j , s<s i<j ,
punchOut-injective (f₀≢fₖ ∘ (i ,_)) _ fᵢ≡fⱼ
injective⇒≤ : ∀ {f : Fin m → Fin n} → Injective _≡_ _≡_ f → m ℕ.≤ n
injective⇒≤ {zero} {_} {f} _ = z≤n
injective⇒≤ {suc _} {zero} {f} _ = contradiction (f zero) ¬Fin0
injective⇒≤ {suc _} {suc _} {f} inj = s≤s (injective⇒≤ (λ eq →
suc-injective (inj (punchOut-injective
(contraInjective _≡_ _≡_ inj 0≢1+n)
(contraInjective _≡_ _≡_ inj 0≢1+n) eq))))
<⇒notInjective : ∀ {f : Fin m → Fin n} → n ℕ.< m → ¬ (Injective _≡_ _≡_ f)
<⇒notInjective n<m inj = ℕₚ.≤⇒≯ (injective⇒≤ inj) n<m
ℕ→Fin-notInjective : ∀ (f : ℕ → Fin n) → ¬ (Injective _≡_ _≡_ f)
ℕ→Fin-notInjective f inj = ℕₚ.<-irrefl refl
(injective⇒≤ (Comp.injective _≡_ _≡_ _≡_ toℕ-injective inj))
cantor-schröder-bernstein : ∀ {f : Fin m → Fin n} {g : Fin n → Fin m} →
Injective _≡_ _≡_ f → Injective _≡_ _≡_ g →
m ≡ n
cantor-schröder-bernstein f-inj g-inj = ℕₚ.≤-antisym
(injective⇒≤ f-inj) (injective⇒≤ g-inj)
module _ {f} {F : Set f → Set f} (RA : RawApplicative F) where
open RawApplicative RA
sequence : ∀ {n} {P : Pred (Fin n) f} →
(∀ i → F (P i)) → F (∀ i → P i)
sequence {zero} ∀iPi = pure λ()
sequence {suc n} ∀iPi = ∀-cons <$> ∀iPi zero ⊛ sequence (∀iPi ∘ suc)
module _ {f} {F : Set f → Set f} (RF : RawFunctor F) where
open RawFunctor RF
sequence⁻¹ : ∀ {A : Set f} {P : Pred A f} →
F (∀ i → P i) → (∀ i → F (P i))
sequence⁻¹ F∀iPi i = (λ f → f i) <$> F∀iPi
module _ {ℓ} {S : Setoid a ℓ} (inj : Injection S (≡-setoid n)) where
open Setoid S
inj⇒≟ : B.Decidable _≈_
inj⇒≟ = Dec.via-injection inj _≟_
inj⇒decSetoid : DecSetoid a ℓ
inj⇒decSetoid = record
{ isDecEquivalence = record
{ isEquivalence = isEquivalence
; _≟_ = inj⇒≟
}
}
opposite-prop : ∀ (i : Fin n) → toℕ (opposite i) ≡ n ∸ suc (toℕ i)
opposite-prop {suc n} zero = toℕ-fromℕ n
opposite-prop {suc n} (suc i) = begin
toℕ (inject₁ (opposite i)) ≡⟨ toℕ-inject₁ (opposite i) ⟩
toℕ (opposite i) ≡⟨ opposite-prop i ⟩
n ∸ suc (toℕ i) ∎
where open ≡-Reasoning
opposite-involutive : Involutive {A = Fin n} _≡_ opposite
opposite-involutive {suc n} i = toℕ-injective (begin
toℕ (opposite (opposite i)) ≡⟨ opposite-prop (opposite i) ⟩
n ∸ (toℕ (opposite i)) ≡⟨ cong (n ∸_) (opposite-prop i) ⟩
n ∸ (n ∸ (toℕ i)) ≡⟨ ℕₚ.m∸[m∸n]≡n (toℕ≤pred[n] i) ⟩
toℕ i ∎)
where open ≡-Reasoning
opposite-suc : ∀ (i : Fin n) → toℕ (opposite (suc i)) ≡ toℕ (opposite i)
opposite-suc {n} i = begin
toℕ (opposite (suc i)) ≡⟨ opposite-prop (suc i) ⟩
suc n ∸ suc (toℕ (suc i)) ≡⟨⟩
n ∸ toℕ (suc i) ≡⟨⟩
n ∸ suc (toℕ i) ≡⟨ sym (opposite-prop i) ⟩
toℕ (opposite i) ∎
where open ≡-Reasoning
inject+-raise-splitAt = join-splitAt
{-# WARNING_ON_USAGE inject+-raise-splitAt
"Warning: inject+-raise-splitAt was deprecated in v1.5.
Please use join-splitAt instead."
#-}
toℕ-raise = toℕ-↑ʳ
{-# WARNING_ON_USAGE toℕ-raise
"Warning: toℕ-raise was deprecated in v2.0.
Please use toℕ-↑ʳ instead."
#-}
toℕ-inject+ : ∀ {m} n (i : Fin m) → toℕ i ≡ toℕ (i ↑ˡ n)
toℕ-inject+ n i = sym (toℕ-↑ˡ i n)
{-# WARNING_ON_USAGE toℕ-inject+
"Warning: toℕ-inject+ was deprecated in v2.0.
Please use toℕ-↑ˡ instead.
NB argument order has been flipped:
the left-hand argument is the Fin m
the right-hand is the Nat index increment."
#-}
splitAt-inject+ : ∀ m n i → splitAt m (i ↑ˡ n) ≡ inj₁ i
splitAt-inject+ m n i = splitAt-↑ˡ m i n
{-# WARNING_ON_USAGE splitAt-inject+
"Warning: splitAt-inject+ was deprecated in v2.0.
Please use splitAt-↑ˡ instead.
NB argument order has been flipped."
#-}
splitAt-raise : ∀ m n i → splitAt m (m ↑ʳ i) ≡ inj₂ {B = Fin n} i
splitAt-raise = splitAt-↑ʳ
{-# WARNING_ON_USAGE splitAt-raise
"Warning: splitAt-raise was deprecated in v2.0.
Please use splitAt-↑ʳ instead."
#-}
Fin0↔⊥ : Fin 0 ↔ ⊥
Fin0↔⊥ = 0↔⊥
{-# WARNING_ON_USAGE Fin0↔⊥
"Warning: Fin0↔⊥ was deprecated in v2.0.
Please use 0↔⊥ instead."
#-}
eq? : A ↣ Fin n → DecidableEquality A
eq? = inj⇒≟
{-# WARNING_ON_USAGE eq?
"Warning: eq? was deprecated in v2.0.
Please use inj⇒≟ instead."
#-}