{-# OPTIONS --without-K --safe #-}
module Data.Integer.Base where
open import Data.Bool.Base using (Bool; T; true; false)
open import Data.Nat.Base as ℕ using (ℕ; z≤n; s≤s)
open import Data.Sign.Base as Sign using (Sign)
open import Level using (0ℓ)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.PropositionalEquality.Core
using (_≡_; _≢_; refl)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Unary using (Pred)
infix 8 -_
infixr 8 _^_
infixl 7 _*_ _⊓_ _/ℕ_ _/_ _%ℕ_ _%_
infixl 6 _+_ _-_ _⊖_ _⊔_
infix 4 _≤_ _≥_ _<_ _>_ _≰_ _≱_ _≮_ _≯_
infix 4 _≤ᵇ_
open import Agda.Builtin.Int public
using ()
renaming
( Int to ℤ
; pos to +_
; negsuc to -[1+_]
)
pattern +0 = + 0
pattern +[1+_] n = + (ℕ.suc n)
0ℤ : ℤ
0ℤ = +0
-1ℤ : ℤ
-1ℤ = -[1+ 0 ]
1ℤ : ℤ
1ℤ = +[1+ 0 ]
∣_∣ : ℤ → ℕ
∣ + n ∣ = n
∣ -[1+ n ] ∣ = ℕ.suc n
sign : ℤ → Sign
sign (+ _) = Sign.+
sign -[1+ _ ] = Sign.-
data _≤_ : ℤ → ℤ → Set where
-≤- : ∀ {m n} → (n≤m : n ℕ.≤ m) → -[1+ m ] ≤ -[1+ n ]
-≤+ : ∀ {m n} → -[1+ m ] ≤ + n
+≤+ : ∀ {m n} → (m≤n : m ℕ.≤ n) → + m ≤ + n
data _<_ : ℤ → ℤ → Set where
-<- : ∀ {m n} → (n<m : n ℕ.< m) → -[1+ m ] < -[1+ n ]
-<+ : ∀ {m n} → -[1+ m ] < + n
+<+ : ∀ {m n} → (m<n : m ℕ.< n) → + m < + n
_≥_ : Rel ℤ 0ℓ
x ≥ y = y ≤ x
_>_ : Rel ℤ 0ℓ
x > y = y < x
_≰_ : Rel ℤ 0ℓ
x ≰ y = ¬ (x ≤ y)
_≱_ : Rel ℤ 0ℓ
x ≱ y = ¬ (x ≥ y)
_≮_ : Rel ℤ 0ℓ
x ≮ y = ¬ (x < y)
_≯_ : Rel ℤ 0ℓ
x ≯ y = ¬ (x > y)
_≤ᵇ_ : ℤ → ℤ → Bool
-[1+ m ] ≤ᵇ -[1+ n ] = n ℕ.≤ᵇ m
(+ m) ≤ᵇ -[1+ n ] = false
-[1+ m ] ≤ᵇ (+ n) = true
(+ m) ≤ᵇ (+ n) = m ℕ.≤ᵇ n
NonZero : Pred ℤ 0ℓ
NonZero i = ℕ.NonZero ∣ i ∣
record Positive (i : ℤ) : Set where
field
pos : T (1ℤ ≤ᵇ i)
record NonNegative (i : ℤ) : Set where
field
nonNeg : T (0ℤ ≤ᵇ i)
record NonPositive (i : ℤ) : Set where
field
nonPos : T (i ≤ᵇ 0ℤ)
record Negative (i : ℤ) : Set where
field
neg : T (i ≤ᵇ -1ℤ)
instance
pos : ∀ {n} → Positive +[1+ n ]
pos = _
nonNeg : ∀ {n} → NonNegative (+ n)
nonNeg = _
nonPos0 : NonPositive 0ℤ
nonPos0 = _
nonPos : ∀ {n} → NonPositive -[1+ n ]
nonPos = _
neg : ∀ {n} → Negative -[1+ n ]
neg = _
≢-nonZero : ∀ {i} → i ≢ 0ℤ → NonZero i
≢-nonZero { +[1+ n ]} _ = _
≢-nonZero { +0} 0≢0 = contradiction refl 0≢0
≢-nonZero { -[1+ n ]} _ = _
>-nonZero : ∀ {i} → i > 0ℤ → NonZero i
>-nonZero (+<+ (s≤s m<n)) = _
<-nonZero : ∀ {i} → i < 0ℤ → NonZero i
<-nonZero -<+ = _
positive : ∀ {i} → i > 0ℤ → Positive i
positive (+<+ (s≤s m<n)) = _
negative : ∀ {i} → i < 0ℤ → Negative i
negative -<+ = _
nonPositive : ∀ {i} → i ≤ 0ℤ → NonPositive i
nonPositive -≤+ = _
nonPositive (+≤+ z≤n) = _
nonNegative : ∀ {i} → i ≥ 0ℤ → NonNegative i
nonNegative {+0} _ = _
nonNegative {+[1+ n ]} _ = _
infix 5 _◂_ _◃_
_◃_ : Sign → ℕ → ℤ
_ ◃ ℕ.zero = +0
Sign.+ ◃ n = + n
Sign.- ◃ ℕ.suc n = -[1+ n ]
data SignAbs : ℤ → Set where
_◂_ : (s : Sign) (n : ℕ) → SignAbs (s ◃ n)
signAbs : ∀ i → SignAbs i
signAbs -[1+ n ] = Sign.- ◂ ℕ.suc n
signAbs +0 = Sign.+ ◂ ℕ.zero
signAbs +[1+ n ] = Sign.+ ◂ ℕ.suc n
-_ : ℤ → ℤ
- -[1+ n ] = +[1+ n ]
- +0 = +0
- +[1+ n ] = -[1+ n ]
_⊖_ : ℕ → ℕ → ℤ
m ⊖ n with m ℕ.<ᵇ n
... | true = - + (n ℕ.∸ m)
... | false = + (m ℕ.∸ n)
_+_ : ℤ → ℤ → ℤ
-[1+ m ] + -[1+ n ] = -[1+ ℕ.suc (m ℕ.+ n) ]
-[1+ m ] + + n = n ⊖ ℕ.suc m
+ m + -[1+ n ] = m ⊖ ℕ.suc n
+ m + + n = + (m ℕ.+ n)
_-_ : ℤ → ℤ → ℤ
i - j = i + (- j)
suc : ℤ → ℤ
suc i = 1ℤ + i
pred : ℤ → ℤ
pred i = -1ℤ + i
_*_ : ℤ → ℤ → ℤ
i * j = sign i Sign.* sign j ◃ ∣ i ∣ ℕ.* ∣ j ∣
_^_ : ℤ → ℕ → ℤ
i ^ ℕ.zero = 1ℤ
i ^ (ℕ.suc m) = i * i ^ m
_⊔_ : ℤ → ℤ → ℤ
-[1+ m ] ⊔ -[1+ n ] = -[1+ ℕ._⊓_ m n ]
-[1+ m ] ⊔ + n = + n
+ m ⊔ -[1+ n ] = + m
+ m ⊔ + n = + (ℕ._⊔_ m n)
_⊓_ : ℤ → ℤ → ℤ
-[1+ m ] ⊓ -[1+ n ] = -[1+ m ℕ.⊔ n ]
-[1+ m ] ⊓ + n = -[1+ m ]
+ m ⊓ -[1+ n ] = -[1+ n ]
+ m ⊓ + n = + (m ℕ.⊓ n)
_/ℕ_ : (dividend : ℤ) (divisor : ℕ) .{{_ : ℕ.NonZero divisor}} → ℤ
(+ n /ℕ d) = + (n ℕ./ d)
(-[1+ n ] /ℕ d) with ℕ.suc n ℕ.% d
... | ℕ.zero = - (+ (ℕ.suc n ℕ./ d))
... | ℕ.suc r = -[1+ (ℕ.suc n ℕ./ d) ]
_/_ : (dividend divisor : ℤ) .{{_ : NonZero divisor}} → ℤ
i / j = (sign j ◃ 1) * (i /ℕ ∣ j ∣)
_%ℕ_ : (dividend : ℤ) (divisor : ℕ) .{{_ : ℕ.NonZero divisor}} → ℕ
(+ n %ℕ d) = n ℕ.% d
(-[1+ n ] %ℕ d) with ℕ.suc n ℕ.% d
... | ℕ.zero = 0
... | r@(ℕ.suc _) = d ℕ.∸ r
_%_ : (dividend divisor : ℤ) .{{_ : NonZero divisor}} → ℕ
i % j = i %ℕ ∣ j ∣