------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to Any
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Data.List.Relation.Unary.Any.Properties where

open import Data.Bool.Base using (Bool; false; true; T)
open import Data.Bool.Properties using (T-∨; T-≡)
open import Data.Empty using ()
open import Data.Fin.Base using (Fin; zero; suc)
open import Data.List.Base as List
open import Data.List.Properties using (ʳ++-defn)
open import Data.List.Effectful using (monad)
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
open import Data.List.Membership.Propositional
open import Data.List.Membership.Propositional.Properties.Core
  using (Any↔; find∘map; map∘find; lose∘find)
open import Data.List.Relation.Binary.Pointwise
  using (Pointwise; []; _∷_)
open import Data.Nat using (zero; suc; _<_; z<s; s<s; s≤s)
open import Data.Nat.Properties using (_≟_; ≤∧≢⇒<; ≤-refl; ≤-step)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Maybe.Relation.Unary.Any as MAny using (just)
open import Data.Product as Prod
  using (_×_; _,_; ; ∃₂; proj₁; proj₂; uncurry′)
open import Data.Product.Properties
open import Data.Product.Function.NonDependent.Propositional
  using (_×-cong_)
import Data.Product.Function.Dependent.Propositional as Σ
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Data.Sum.Function.Propositional using (_⊎-cong_)
open import Effect.Monad
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; equivalence; Equivalence)
open import Function.Inverse as Inv using (_↔_; inverse; Inverse)
open import Function.Related as Related using (Kind; Related; SK-sym)
open import Level using (Level)
open import Relation.Binary as B hiding (_⇔_)
open import Relation.Binary.PropositionalEquality as P
  using (_≡_; refl; inspect)
open import Relation.Unary as U
  using (Pred; _⟨×⟩_; _⟨→⟩_) renaming (_⊆_ to _⋐_)
open import Relation.Nullary using (¬_; _because_; does; ofʸ; ofⁿ; yes; no)
open import Relation.Nullary.Negation using (contradiction; ¬?; decidable-stable)

private
  open module ListMonad {} = RawMonad (monad { = })

private
  variable
    a b c p q r  : Level
    A : Set a
    B : Set b
    C : Set c
    P Q R : Pred A p
    x y : A
    xs ys : List A

------------------------------------------------------------------------
-- Equality properties

lift-resp :  {_≈_ : Rel A }  P Respects _≈_ 
            (Any P) Respects (Pointwise _≈_)
lift-resp resp (x≈y  xs≈ys) (here px)   = here (resp x≈y px)
lift-resp resp (x≈y  xs≈ys) (there pxs) = there (lift-resp resp xs≈ys pxs)

here-injective :  {p q : P x}  here {P = P} {xs = xs} p  here q  p  q
here-injective refl = refl

there-injective :  {p q : Any P xs}  there {x = x} p  there q  p  q
there-injective refl = refl

------------------------------------------------------------------------
-- Misc

¬Any[] : ¬ Any P []
¬Any[] ()

------------------------------------------------------------------------
-- Any is a congruence

Any-cong :  {k : Kind}  (∀ x  Related k (P x) (Q x)) 
           (∀ {z}  Related k (z  xs) (z  ys)) 
           Related k (Any P xs) (Any Q ys)
Any-cong {P = P} {Q = Q} {xs = xs} {ys} P↔Q xs≈ys =
  Any P xs                ↔⟨ SK-sym Any↔ 
  ( λ x  x  xs × P x)  ∼⟨ Σ.cong Inv.id (xs≈ys ×-cong P↔Q _) 
  ( λ x  x  ys × Q x)  ↔⟨ Any↔ 
  Any Q ys                
  where open Related.EquationalReasoning

------------------------------------------------------------------------
-- Any.map

map-id :  (f : P  P)  (∀ {x} (p : P x)  f p  p) 
         (p : Any P xs)  Any.map f p  p
map-id f hyp (here  p) = P.cong here (hyp p)
map-id f hyp (there p) = P.cong there $ map-id f hyp p

map-∘ :  (f : Q  R) (g : P  Q) (p : Any P xs) 
        Any.map (f  g) p  Any.map f (Any.map g p)
map-∘ f g (here  p) = refl
map-∘ f g (there p) = P.cong there $ map-∘ f g p

------------------------------------------------------------------------
-- Any.lookup

lookup-result :  (p : Any P xs)  P (Any.lookup p)
lookup-result (here px) = px
lookup-result (there p) = lookup-result p

lookup-index :  (p : Any P xs)  P (lookup xs (Any.index p))
lookup-index (here px)   = px
lookup-index (there pxs) = lookup-index pxs

------------------------------------------------------------------------
-- Swapping

-- Nested occurrences of Any can sometimes be swapped. See also ×↔.

swap :  {P : A  B  Set } 
       Any  x  Any (P x) ys) xs  Any  y  Any (flip P y) xs) ys
swap (here  pys)  = Any.map here pys
swap (there pxys) = Any.map there (swap pxys)

swap-there :  {P : A  B  Set } 
             (any : Any  x  Any (P x) ys) xs) 
             swap (Any.map (there {x = x}) any)  there (swap any)
swap-there (here  pys)  = refl
swap-there (there pxys) = P.cong (Any.map there) (swap-there pxys)

swap-invol :  {P : A  B  Set } 
             (any : Any  x  Any (P x) ys) xs) 
             swap (swap any)  any
swap-invol (here (here px))   = refl
swap-invol (here (there pys)) =
  P.cong (Any.map there) (swap-invol (here pys))
swap-invol (there pxys)       =
  P.trans (swap-there (swap pxys)) (P.cong there (swap-invol pxys))

swap↔ :  {P : A  B  Set } 
       Any  x  Any (P x) ys) xs  Any  y  Any (flip P y) xs) ys
swap↔ = inverse swap swap swap-invol swap-invol

------------------------------------------------------------------------
-- Lemmas relating Any to ⊥

⊥↔Any⊥ :   Any (const ) xs
⊥↔Any⊥ = inverse (λ())  p  from p) (λ())  p  from p)
  where
  from : Any (const ) xs  B
  from (there p) = from p

⊥↔Any[] :   Any P []
⊥↔Any[] = inverse (λ()) (λ()) (λ()) (λ())

------------------------------------------------------------------------
-- Lemmas relating Any to ⊤

-- These introduction and elimination rules are not inverses, though.

any⁺ :  (p : A  Bool)  Any (T  p) xs  T (any p xs)
any⁺ p (here  px)          = Equivalence.from T-∨ ⟨$⟩ inj₁ px
any⁺ p (there {x = x} pxs) with p x
... | true  = _
... | false = any⁺ p pxs

any⁻ :  (p : A  Bool) xs  T (any p xs)  Any (T  p) xs
any⁻ p (x  xs) px∷xs with p x | inspect p x
... | true  | P.[ eq ] = here (Equivalence.from T-≡ ⟨$⟩ eq)
... | false | _        = there (any⁻ p xs px∷xs)

any⇔ :  {p : A  Bool}  Any (T  p) xs  T (any p xs)
any⇔ = equivalence (any⁺ _) (any⁻ _ _)

------------------------------------------------------------------------
-- Sums commute with Any

Any-⊎⁺ : Any P xs  Any Q xs  Any  x  P x  Q x) xs
Any-⊎⁺ = [ Any.map inj₁ , Any.map inj₂ ]′

Any-⊎⁻ : Any  x  P x  Q x) xs  Any P xs  Any Q xs
Any-⊎⁻ (here (inj₁ p)) = inj₁ (here p)
Any-⊎⁻ (here (inj₂ q)) = inj₂ (here q)
Any-⊎⁻ (there p)       = Sum.map there there (Any-⊎⁻ p)

⊎↔ : (Any P xs  Any Q xs)  Any  x  P x  Q x) xs
⊎↔ {P = P} {Q = Q} = inverse Any-⊎⁺ Any-⊎⁻ from∘to to∘from
  where
  from∘to : (p : Any P xs  Any Q xs)  Any-⊎⁻ (Any-⊎⁺ p)  p
  from∘to (inj₁ (here  p)) = refl
  from∘to (inj₁ (there p)) rewrite from∘to (inj₁ p) = refl
  from∘to (inj₂ (here  q)) = refl
  from∘to (inj₂ (there q)) rewrite from∘to (inj₂ q) = refl

  to∘from : (p : Any  x  P x  Q x) xs)  Any-⊎⁺ (Any-⊎⁻ p)  p
  to∘from (here (inj₁ p)) = refl
  to∘from (here (inj₂ q)) = refl
  to∘from (there p) with Any-⊎⁻ p | to∘from p
  to∘from (there .(Any.map inj₁ p)) | inj₁ p | refl = refl
  to∘from (there .(Any.map inj₂ q)) | inj₂ q | refl = refl

------------------------------------------------------------------------
-- Products "commute" with Any.

Any-×⁺ : Any P xs × Any Q ys  Any  x  Any  y  P x × Q y) ys) xs
Any-×⁺ (p , q) = Any.map  p  Any.map  q  (p , q)) q) p

Any-×⁻ : Any  x  Any  y  P x × Q y) ys) xs 
         Any P xs × Any Q ys
Any-×⁻ pq with Prod.map₂ (Prod.map₂ find) (find pq)
... | (x , x∈xs , y , y∈ys , p , q) = lose x∈xs p , lose y∈ys q

×↔ :  {xs ys} 
     (Any P xs × Any Q ys)  Any  x  Any  y  P x × Q y) ys) xs
×↔ {P = P} {Q = Q} {xs} {ys} = inverse Any-×⁺ Any-×⁻ from∘to to∘from
  where
  open P.≡-Reasoning

  from∘to :  pq  Any-×⁻ (Any-×⁺ pq)  pq
  from∘to (p , q) =

    Any-×⁻ (Any-×⁺ (p , q))

      ≡⟨⟩

    (let (x , x∈xs , pq)    = find (Any-×⁺ (p , q))
         (y , y∈ys , p , q) = find pq
     in  lose x∈xs p , lose y∈ys q)

     ≡⟨ P.cong    let (x , x∈xs , pq)    = 
                          (y , y∈ys , p , q) = find pq
                      in  lose x∈xs p , lose y∈ys q)
               (find∘map p  p  Any.map (p ,_) q)) 

    (let (x , x∈xs , p)     = find p
         (y , y∈ys , p , q) = find (Any.map (p ,_) q)
     in  lose x∈xs p , lose y∈ys q)

     ≡⟨ P.cong    let (x , x∈xs , p)     = find p
                          (y , y∈ys , p , q) = 
                      in  lose x∈xs p , lose y∈ys q)
               (find∘map q (proj₂ (proj₂ (find p)) ,_)) 

    (let (x , x∈xs , p) = find p
         (y , y∈ys , q) = find q
     in  lose x∈xs p , lose y∈ys q)

     ≡⟨ P.cong₂ _,_ (lose∘find p) (lose∘find q) 

    (p , q) 


  to∘from :  pq  Any-×⁺ {xs = xs} (Any-×⁻ pq)  pq
  to∘from pq
    with find pq
      |  (f : (proj₁ (find pq) ≡_)  _)  map∘find pq {f})
  ... | (x , x∈xs , pq′) | lem₁
    with find pq′
      |  (f : (proj₁ (find pq′) ≡_)  _)  map∘find pq′ {f})
  ... | (y , y∈ys , p , q) | lem₂
    rewrite P.sym $ map-∘ {R = λ x  Any  y  P x × Q y) ys}
                           p  Any.map  q  p , q) (lose y∈ys q))
                           y  P.subst P y p)
                          x∈xs
            = lem₁ _ helper
    where
    helper : Any.map  q  p , q) (lose y∈ys q)  pq′
    helper rewrite P.sym $ map-∘  q  p , q)
                                  y  P.subst Q y q)
                                 y∈ys
           = lem₂ _ refl

------------------------------------------------------------------------
-- Half-applied product commutes with Any.

module _ {_~_ : REL A B r} where

  Any-Σ⁺ʳ : ( λ x  Any (_~ x) xs)  Any (  _~_) xs
  Any-Σ⁺ʳ (b , here px) = here (b , px)
  Any-Σ⁺ʳ (b , there pxs) = there (Any-Σ⁺ʳ (b , pxs))

  Any-Σ⁻ʳ : Any (  _~_) xs   λ x  Any (_~ x) xs
  Any-Σ⁻ʳ (here (b , x)) = b , here x
  Any-Σ⁻ʳ (there xs) = Prod.map₂ there $ Any-Σ⁻ʳ xs

------------------------------------------------------------------------
-- Invertible introduction (⁺) and elimination (⁻) rules for various
-- list functions
------------------------------------------------------------------------

------------------------------------------------------------------------
-- singleton

singleton⁺ : P x  Any P [ x ]
singleton⁺ Px = here Px

singleton⁻ : Any P [ x ]  P x
singleton⁻ (here Px) = Px

------------------------------------------------------------------------
-- map

module _ {f : A  B} where

  map⁺ : Any (P  f) xs  Any P (List.map f xs)
  map⁺ (here p)  = here p
  map⁺ (there p) = there $ map⁺ p

  map⁻ : Any P (List.map f xs)  Any (P  f) xs
  map⁻ {xs = x  xs} (here p)  = here p
  map⁻ {xs = x  xs} (there p) = there $ map⁻ p

  map⁺∘map⁻ : (p : Any P (List.map f xs))  map⁺ (map⁻ p)  p
  map⁺∘map⁻ {xs = x  xs} (here  p) = refl
  map⁺∘map⁻ {xs = x  xs} (there p) = P.cong there (map⁺∘map⁻ p)

  map⁻∘map⁺ :  (P : Pred B p) 
              (p : Any (P  f) xs)  map⁻ {P = P} (map⁺ p)  p
  map⁻∘map⁺ P (here  p) = refl
  map⁻∘map⁺ P (there p) = P.cong there (map⁻∘map⁺ P p)

  map↔ : Any (P  f) xs  Any P (List.map f xs)
  map↔ = inverse map⁺ map⁻ (map⁻∘map⁺ _) map⁺∘map⁻

  gmap : P  Q  f  Any P  Any Q  map f
  gmap g = map⁺  Any.map g

------------------------------------------------------------------------
-- mapMaybe

module _ (f : A  Maybe B) where

  mapMaybe⁺ :  xs  Any (MAny.Any P) (map f xs)  Any P (mapMaybe f xs)
  mapMaybe⁺ (x  xs) ps with f x | ps
  ... | nothing | there pxs      = mapMaybe⁺ xs pxs
  ... | just _  | here (just py) = here py
  ... | just _  | there pxs      = there (mapMaybe⁺ xs pxs)

------------------------------------------------------------------------
-- _++_

module _ {P : A  Set p} where

  ++⁺ˡ : Any P xs  Any P (xs ++ ys)
  ++⁺ˡ (here p)  = here p
  ++⁺ˡ (there p) = there (++⁺ˡ p)

  ++⁺ʳ :  xs {ys}  Any P ys  Any P (xs ++ ys)
  ++⁺ʳ []       p = p
  ++⁺ʳ (x  xs) p = there (++⁺ʳ xs p)

  ++⁻ :  xs {ys}  Any P (xs ++ ys)  Any P xs  Any P ys
  ++⁻ []       p         = inj₂ p
  ++⁻ (x  xs) (here p)  = inj₁ (here p)
  ++⁻ (x  xs) (there p) = Sum.map there id (++⁻ xs p)

  ++⁺∘++⁻ :  xs {ys} (p : Any P (xs ++ ys))  [ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs p)  p
  ++⁺∘++⁻ []       p         = refl
  ++⁺∘++⁻ (x  xs) (here  p) = refl
  ++⁺∘++⁻ (x  xs) (there p) with ++⁻ xs p | ++⁺∘++⁻ xs p
  ... | inj₁ p′ | ih = P.cong there ih
  ... | inj₂ p′ | ih = P.cong there ih

  ++⁻∘++⁺ :  xs {ys} (p : Any P xs  Any P ys) 
            ++⁻ xs ([ ++⁺ˡ , ++⁺ʳ xs ]′ p)  p
  ++⁻∘++⁺ []            (inj₂ p)         = refl
  ++⁻∘++⁺ (x  xs)      (inj₁ (here  p)) = refl
  ++⁻∘++⁺ (x  xs) {ys} (inj₁ (there p)) rewrite ++⁻∘++⁺ xs {ys} (inj₁ p) = refl
  ++⁻∘++⁺ (x  xs)      (inj₂ p)         rewrite ++⁻∘++⁺ xs      (inj₂ p) = refl

  ++↔ :  {xs ys}  (Any P xs  Any P ys)  Any P (xs ++ ys)
  ++↔ {xs = xs} = inverse [ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs) (++⁻∘++⁺ xs) (++⁺∘++⁻ xs)

  ++-comm :  xs ys  Any P (xs ++ ys)  Any P (ys ++ xs)
  ++-comm xs ys = [ ++⁺ʳ ys , ++⁺ˡ ]′  ++⁻ xs

  ++-comm∘++-comm :  xs {ys} (p : Any P (xs ++ ys)) 
                    ++-comm ys xs (++-comm xs ys p)  p
  ++-comm∘++-comm [] {ys} p
    rewrite ++⁻∘++⁺ ys {ys = []} (inj₁ p) = refl
  ++-comm∘++-comm (x  xs) {ys} (here p)
    rewrite ++⁻∘++⁺ ys {ys = x  xs} (inj₂ (here p)) = refl
  ++-comm∘++-comm (x  xs)      (there p) with ++⁻ xs p | ++-comm∘++-comm xs p
  ++-comm∘++-comm (x  xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ʳ ys p))))
    | inj₁ p | refl
    rewrite ++⁻∘++⁺ ys (inj₂                 p)
          | ++⁻∘++⁺ ys (inj₂ $ there {x = x} p) = refl
  ++-comm∘++-comm (x  xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ˡ p))))
    | inj₂ p | refl
    rewrite ++⁻∘++⁺ ys {ys =     xs} (inj₁ p)
          | ++⁻∘++⁺ ys {ys = x  xs} (inj₁ p) = refl

  ++↔++ :  xs ys  Any P (xs ++ ys)  Any P (ys ++ xs)
  ++↔++ xs ys = inverse (++-comm xs ys) (++-comm ys xs)
                        (++-comm∘++-comm xs) (++-comm∘++-comm ys)

  ++-insert :  xs {ys}  P x  Any P (xs ++ [ x ] ++ ys)
  ++-insert xs Px = ++⁺ʳ xs (++⁺ˡ (singleton⁺ Px))

------------------------------------------------------------------------
-- concat

module _ {P : A  Set p} where

  concat⁺ :  {xss}  Any (Any P) xss  Any P (concat xss)
  concat⁺ (here p)           = ++⁺ˡ p
  concat⁺ (there {x = xs} p) = ++⁺ʳ xs (concat⁺ p)

  concat⁻ :  xss  Any P (concat xss)  Any (Any P) xss
  concat⁻ ([]        xss) p         = there $ concat⁻ xss p
  concat⁻ ((x  xs)  xss) (here  p) = here (here p)
  concat⁻ ((x  xs)  xss) (there p) with concat⁻ (xs  xss) p
  ... | here  p′ = here (there p′)
  ... | there p′ = there p′

  concat⁻∘++⁺ˡ :  {xs} xss (p : Any P xs) 
                 concat⁻ (xs  xss) (++⁺ˡ p)  here p
  concat⁻∘++⁺ˡ xss (here  p) = refl
  concat⁻∘++⁺ˡ xss (there p) rewrite concat⁻∘++⁺ˡ xss p = refl

  concat⁻∘++⁺ʳ :  xs xss (p : Any P (concat xss)) 
                   concat⁻ (xs  xss) (++⁺ʳ xs p)  there (concat⁻ xss p)
  concat⁻∘++⁺ʳ []       xss p = refl
  concat⁻∘++⁺ʳ (x  xs) xss p rewrite concat⁻∘++⁺ʳ xs xss p = refl

  concat⁺∘concat⁻ :  xss (p : Any P (concat xss)) 
                      concat⁺ (concat⁻ xss p)  p
  concat⁺∘concat⁻ ([]        xss) p         = concat⁺∘concat⁻ xss p
  concat⁺∘concat⁻ ((x  xs)  xss) (here p)  = refl
  concat⁺∘concat⁻ ((x  xs)  xss) (there p)
    with p | concat⁻ (xs  xss) p | concat⁺∘concat⁻ (xs  xss) p
  ... | .(++⁺ˡ p′)              | here  p′ | refl = refl
  ... | .(++⁺ʳ xs (concat⁺ p′)) | there p′ | refl = refl

  concat⁻∘concat⁺ :  {xss} (p : Any (Any P) xss)  concat⁻ xss (concat⁺ p)  p
  concat⁻∘concat⁺ (here                      p) = concat⁻∘++⁺ˡ _ p
  concat⁻∘concat⁺ (there {x = xs} {xs = xss} p)
    rewrite concat⁻∘++⁺ʳ xs xss (concat⁺ p) =
      P.cong there $ concat⁻∘concat⁺ p

  concat↔ :  {xss}  Any (Any P) xss  Any P (concat xss)
  concat↔ {xss} = inverse concat⁺ (concat⁻ xss) concat⁻∘concat⁺ (concat⁺∘concat⁻ xss)

------------------------------------------------------------------------
-- cartesianProductWith

module _ (f : A  B  C) where

  cartesianProductWith⁺ : (∀ {x y}  P x  Q y  R (f x y)) 
                          Any P xs  Any Q ys 
                          Any R (cartesianProductWith f xs ys)
  cartesianProductWith⁺ pres (here  px)  qys = ++⁺ˡ (map⁺ (Any.map (pres px) qys))
  cartesianProductWith⁺ pres (there qxs) qys = ++⁺ʳ _ (cartesianProductWith⁺ pres qxs qys)

  cartesianProductWith⁻ : (∀ {x y}  R (f x y)  P x × Q y)   xs ys 
                          Any R (cartesianProductWith f xs ys) 
                          Any P xs × Any Q ys
  cartesianProductWith⁻ resp (x  xs) ys Rxsys with ++⁻ (map (f x) ys) Rxsys
  cartesianProductWith⁻ resp (x  xs) ys Rxsys | inj₁ Rfxys with map⁻ Rfxys
  ... | Rxys = here (proj₁ (resp (proj₂ (Any.satisfied Rxys)))) , Any.map (proj₂  resp) Rxys
  cartesianProductWith⁻ resp (x  xs) ys Rxsys | inj₂ Rc with cartesianProductWith⁻ resp xs ys Rc
  ... | pxs , qys = there pxs , qys

------------------------------------------------------------------------
-- cartesianProduct

cartesianProduct⁺ : Any P xs  Any Q ys 
                    Any (P ⟨×⟩ Q) (cartesianProduct xs ys)
cartesianProduct⁺ = cartesianProductWith⁺ _,_ _,_

cartesianProduct⁻ :  xs ys  Any (P ⟨×⟩ Q) (cartesianProduct xs ys) 
                    Any P xs × Any Q ys
cartesianProduct⁻ = cartesianProductWith⁻ _,_ id

------------------------------------------------------------------------
-- applyUpTo

applyUpTo⁺ :  f {i n}  P (f i)  i < n  Any P (applyUpTo f n)
applyUpTo⁺ _ p z<s       = here p
applyUpTo⁺ f p (s<s i<n@(s≤s _)) =
  there (applyUpTo⁺ (f  suc) p i<n)

applyUpTo⁻ :  f {n}  Any P (applyUpTo f n) 
              λ i  i < n × P (f i)
applyUpTo⁻ f {suc n} (here p)  = zero , z<s , p
applyUpTo⁻ f {suc n} (there p) with applyUpTo⁻ (f  suc) p
... | i , i<n , q = suc i , s<s i<n , q

------------------------------------------------------------------------
-- applyDownFrom

module _ {P : A  Set p} where

  applyDownFrom⁺ :  f {i n}  P (f i)  i < n  Any P (applyDownFrom f n)
  applyDownFrom⁺ f {i} {suc n} p (s≤s i≤n) with i  n
  ... | yes P.refl = here p
  ... | no  i≢n    = there (applyDownFrom⁺ f p (≤∧≢⇒< i≤n i≢n))

  applyDownFrom⁻ :  f {n}  Any P (applyDownFrom f n) 
                    λ i  i < n × P (f i)
  applyDownFrom⁻ f {suc n} (here p)  = n , ≤-refl , p
  applyDownFrom⁻ f {suc n} (there p) with applyDownFrom⁻ f p
  ... | i , i<n , pf = i , ≤-step i<n , pf

------------------------------------------------------------------------
-- tabulate

tabulate⁺ :  {n} {f : Fin n  A} i  P (f i)  Any P (tabulate f)
tabulate⁺ zero    p = here p
tabulate⁺ (suc i) p = there (tabulate⁺ i p)

tabulate⁻ :  {n} {f : Fin n  A}  Any P (tabulate f)   λ i  P (f i)
tabulate⁻ {n = suc _} (here p)  = zero , p
tabulate⁻ {n = suc _} (there p) = Prod.map suc id (tabulate⁻ p)

------------------------------------------------------------------------
-- filter

module _ (Q? : U.Decidable Q) where

  filter⁺ : (p : Any P xs)  Any P (filter Q? xs)  ¬ Q (Any.lookup p)
  filter⁺ {xs = x  _} (here px) with Q? x
  ... | true  because _       = inj₁ (here px)
  ... | false because ofⁿ ¬Qx = inj₂ ¬Qx
  filter⁺ {xs = x  _} (there p) with does (Q? x)
  ... | true  = Sum.map₁ there (filter⁺ p)
  ... | false = filter⁺ p

  filter⁻ : Any P (filter Q? xs)  Any P xs
  filter⁻ {xs = x  xs} p with does (Q? x) | p
  ... | true  | here px   = here px
  ... | true  | there pxs = there (filter⁻ pxs)
  ... | false | pxs       = there (filter⁻ pxs)

------------------------------------------------------------------------
-- derun and deduplicate

module _ {R : A  A  Set r} (R? : B.Decidable R) where

  private
    derun⁺-aux :  x xs  P Respects R  P x  Any P (derun R? (x  xs))
    derun⁺-aux x [] resp Px = here Px
    derun⁺-aux x (y  xs) resp Px with R? x y
    ... | true  because ofʸ Rxy = derun⁺-aux y xs resp (resp Rxy Px)
    ... | false because _       = here Px

  derun⁺ : P Respects R  Any P xs  Any P (derun R? xs)
  derun⁺ {xs = x  xs}     resp (here px)   = derun⁺-aux x xs resp px
  derun⁺ {xs = x  y  xs} resp (there pxs) with does (R? x y)
  ... | true  = derun⁺ resp pxs
  ... | false = there (derun⁺ resp pxs)

  deduplicate⁺ :  {xs}  P Respects (flip R)  Any P xs  Any P (deduplicate R? xs)
  deduplicate⁺ {xs = x  xs} resp (here px)   = here px
  deduplicate⁺ {xs = x  xs} resp (there pxs)
    with filter⁺ (¬?  R? x) (deduplicate⁺ resp pxs)
  ... | inj₁ p = there p
  ... | inj₂ ¬¬q with decidable-stable (R? x (Any.lookup (deduplicate⁺ resp pxs))) ¬¬q
  ...  | q = here (resp q (lookup-result (deduplicate⁺ resp pxs)))

  private
    derun⁻-aux : Any P (derun R? (x  xs))  Any P (x  xs)
    derun⁻-aux {x = x} {[]}    (here px) = here px
    derun⁻-aux {x = x} {y  _} p[x∷y∷xs] with does (R? x y) | p[x∷y∷xs]
    ... | true  | p[y∷xs]        = there (derun⁻-aux p[y∷xs])
    ... | false | here px        = here px
    ... | false | there p[y∷xs]! = there (derun⁻-aux p[y∷xs]!)

  derun⁻ : Any P (derun R? xs)  Any P xs
  derun⁻ {xs = x  xs} p[x∷xs]! = derun⁻-aux p[x∷xs]!

  deduplicate⁻ : Any P (deduplicate R? xs)  Any P xs
  deduplicate⁻ {xs = x  _} (here px)    = here px
  deduplicate⁻ {xs = x  _} (there pxs!) = there (deduplicate⁻ (filter⁻ (¬?  R? x) pxs!))

------------------------------------------------------------------------
-- map-with-∈.

module _ {P : B  Set p} where

  map-with-∈⁺ :  {xs : List A} (f :  {x}  x  xs  B) 
                (∃₂ λ x (x∈xs : x  xs)  P (f x∈xs)) 
                Any P (mapWith∈ xs f)
  map-with-∈⁺ f (_ , here refl  , p) = here p
  map-with-∈⁺ f (_ , there x∈xs , p) =
    there $ map-with-∈⁺ (f  there) (_ , x∈xs , p)

  map-with-∈⁻ :  (xs : List A) (f :  {x}  x  xs  B) 
                Any P (mapWith∈ xs f) 
                ∃₂ λ x (x∈xs : x  xs)  P (f x∈xs)
  map-with-∈⁻ (y  xs) f (here  p) = (y , here refl , p)
  map-with-∈⁻ (y  xs) f (there p) =
    Prod.map₂ (Prod.map there id) $ map-with-∈⁻ xs (f  there) p

  map-with-∈↔ :  {xs : List A} {f :  {x}  x  xs  B} 
                (∃₂ λ x (x∈xs : x  xs)  P (f x∈xs))  Any P (mapWith∈ xs f)
  map-with-∈↔ = inverse (map-with-∈⁺ _) (map-with-∈⁻ _ _) (from∘to _) (to∘from _ _)
    where
    from∘to :  {xs : List A} (f :  {x}  x  xs  B)
              (p : ∃₂ λ x (x∈xs : x  xs)  P (f x∈xs)) 
              map-with-∈⁻ xs f (map-with-∈⁺ f p)  p
    from∘to f (_ , here refl  , p) = refl
    from∘to f (_ , there x∈xs , p)
      rewrite from∘to (f  there) (_ , x∈xs , p) = refl

    to∘from :  (xs : List A) (f :  {x}  x  xs  B)
              (p : Any P (mapWith∈ xs f)) 
              map-with-∈⁺ f (map-with-∈⁻ xs f p)  p
    to∘from (y  xs) f (here  p) = refl
    to∘from (y  xs) f (there p) =
      P.cong there $ to∘from xs (f  there) p

------------------------------------------------------------------------
-- reverse

reverseAcc⁺ :  acc xs  Any P acc  Any P xs  Any P (reverseAcc acc xs)
reverseAcc⁺ acc []       (inj₁ ps)        = ps
reverseAcc⁺ acc (x  xs) (inj₁ ps)        = reverseAcc⁺ (x  acc) xs (inj₁ (there ps))
reverseAcc⁺ acc (x  xs) (inj₂ (here px)) = reverseAcc⁺ (x  acc) xs (inj₁ (here px))
reverseAcc⁺ acc (x  xs) (inj₂ (there y)) = reverseAcc⁺ (x  acc) xs (inj₂ y)

reverseAcc⁻ :  acc xs  Any P (reverseAcc acc xs)  Any P acc  Any P xs
reverseAcc⁻ acc []       ps = inj₁ ps
reverseAcc⁻ acc (x  xs) ps rewrite ʳ++-defn xs {x  acc} with ++⁻ (reverseAcc [] xs) ps
... | inj₂ (here p') = inj₂ (here p')
... | inj₂ (there ps') = inj₁ ps'
... | inj₁ ps' with reverseAcc⁻ [] xs ps'
...   | inj₂ ps'' = inj₂ (there ps'')

reverse⁺ : Any P xs  Any P (reverse xs)
reverse⁺ ps = reverseAcc⁺ [] _ (inj₂ ps)

reverse⁻ : Any P (reverse xs)  Any P xs
reverse⁻ ps with reverseAcc⁻ [] _ ps
... | inj₂ ps' = ps'

------------------------------------------------------------------------
-- return

module _ {P : A  Set p} where

  return⁺ : P x  Any P (return x)
  return⁺ = here

  return⁻ : Any P (return x)  P x
  return⁻ (here p) = p

  return⁺∘return⁻ : (p : Any P (return x))  return⁺ (return⁻ p)  p
  return⁺∘return⁻ (here p) = refl

  return⁻∘return⁺ : (p : P x)  return⁻ (return⁺ p)  p
  return⁻∘return⁺ p = refl

  return↔ : P x  Any P (return x)
  return↔ = inverse return⁺ return⁻ return⁻∘return⁺ return⁺∘return⁻

------------------------------------------------------------------------
-- _∷_

module _ (P : Pred A p) where

  ∷↔ : (P x  Any P xs)  Any P (x  xs)
  ∷↔ {x = x} {xs} =
    (P x          Any P xs)  ↔⟨ return↔ {P = P} ⊎-cong (Any P xs ) 
    (Any P [ x ]  Any P xs)  ↔⟨ ++↔ {P = P} {xs = [ x ]} 
    Any P (x  xs)            
    where open Related.EquationalReasoning

------------------------------------------------------------------------
-- _>>=_

module _ {A B : Set } {P : B  Set p} {f : A  List B} where

  >>=↔ : Any (Any P  f) xs  Any P (xs >>= f)
  >>=↔ {xs = xs} =
    Any (Any P  f) xs           ↔⟨ map↔ 
    Any (Any P) (List.map f xs)  ↔⟨ concat↔ 
    Any P (xs >>= f)             
    where open Related.EquationalReasoning

------------------------------------------------------------------------
-- _⊛_

⊛↔ :  {P : B  Set } {fs : List (A  B)} {xs : List A} 
     Any  f  Any (P  f) xs) fs  Any P (fs  xs)
⊛↔ {P = P} {fs} {xs} =
  Any  f  Any (P  f) xs) fs               ↔⟨ Any-cong  _  Any-cong  _  return↔) (_ )) (_ ) 
  Any  f  Any (Any P  return  f) xs) fs  ↔⟨ Any-cong  _  >>=↔ ) (_ ) 
  Any  f  Any P (xs >>= return  f)) fs    ↔⟨ >>=↔ 
  Any P (fs  xs)                             
  where open Related.EquationalReasoning

-- An alternative introduction rule for _⊛_

⊛⁺′ :  {P : A  Set } {Q : B  Set } {fs : List (A  B)} {xs} 
      Any (P ⟨→⟩ Q) fs  Any P xs  Any Q (fs  xs)
⊛⁺′ pq p =
  Inverse.to ⊛↔ ⟨$⟩
    Any.map  pq  Any.map  {x}  pq {x}) p) pq

------------------------------------------------------------------------
-- _⊗_

⊗↔ : {P : A × B  Set } {xs : List A} {ys : List B} 
     Any  x  Any  y  P (x , y)) ys) xs  Any P (xs  ys)
⊗↔ {P = P} {xs} {ys} =
  Any  x  Any  y  P (x , y)) ys) xs                             ↔⟨ return↔ 
  Any  _,_  Any  x  Any  y  P (x , y)) ys) xs) (return _,_)  ↔⟨ ⊛↔ 
  Any  x,  Any (P  x,) ys) (_,_ <$> xs)                           ↔⟨ ⊛↔ 
  Any P (xs  ys)                                                     
  where open Related.EquationalReasoning

⊗↔′ : {P : A  Set } {Q : B  Set } {xs : List A} {ys : List B} 
      (Any P xs × Any Q ys)  Any (P ⟨×⟩ Q) (xs  ys)
⊗↔′ {P = P} {Q} {xs} {ys} =
  (Any P xs × Any Q ys)                    ↔⟨ ×↔ 
  Any  x  Any  y  P x × Q y) ys) xs  ↔⟨ ⊗↔ 
  Any (P ⟨×⟩ Q) (xs  ys)                  
  where open Related.EquationalReasoning