{-# OPTIONS --without-K --safe #-}
module Data.Product.Relation.Binary.Pointwise.NonDependent where
open import Data.Product as Prod
open import Data.Product.Properties using (≡-dec)
open import Data.Sum.Base
open import Data.Unit.Base using (⊤)
open import Function.Base
open import Function.Equality as F using (_⟶_; _⟨$⟩_)
open import Function.Equivalence as Eq
using (Equivalence; _⇔_; module Equivalence)
open import Function.Injection as Inj
using (Injection; _↣_; module Injection)
open import Function.Inverse as Inv
using (Inverse; _↔_; module Inverse)
open import Function.LeftInverse as LeftInv
using (LeftInverse; _↞_; _LeftInverseOf_; module LeftInverse)
open import Function.Related
open import Function.Surjection as Surj
using (Surjection; _↠_; module Surjection)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
module _ {a₁ a₂ ℓ₁ ℓ₂} {A₁ : Set a₁} {A₂ : Set a₂} where
Pointwise : Rel A₁ ℓ₁ → Rel A₂ ℓ₂ → Rel (A₁ × A₂) _
Pointwise _∼₁_ _∼₂_ = (_∼₁_ on proj₁) -×- (_∼₂_ on proj₂)
×-reflexive : ∀ {_≈₁_ _∼₁_ _≈₂_ _∼₂_} →
_≈₁_ ⇒ _∼₁_ → _≈₂_ ⇒ _∼₂_ →
(Pointwise _≈₁_ _≈₂_) ⇒ (Pointwise _∼₁_ _∼₂_)
×-reflexive refl₁ refl₂ (x∼y₁ , x∼y₂) = refl₁ x∼y₁ , refl₂ x∼y₂
×-refl : ∀ {_∼₁_ _∼₂_} →
Reflexive _∼₁_ → Reflexive _∼₂_ →
Reflexive (Pointwise _∼₁_ _∼₂_)
×-refl refl₁ refl₂ = refl₁ , refl₂
×-irreflexive₁ : ∀ {_≈₁_ _<₁_ _≈₂_ _<₂_} →
Irreflexive _≈₁_ _<₁_ →
Irreflexive (Pointwise _≈₁_ _≈₂_) (Pointwise _<₁_ _<₂_)
×-irreflexive₁ ir x≈y x<y = ir (proj₁ x≈y) (proj₁ x<y)
×-irreflexive₂ : ∀ {_≈₁_ _<₁_ _≈₂_ _<₂_} →
Irreflexive _≈₂_ _<₂_ →
Irreflexive (Pointwise _≈₁_ _≈₂_) (Pointwise _<₁_ _<₂_)
×-irreflexive₂ ir x≈y x<y = ir (proj₂ x≈y) (proj₂ x<y)
×-symmetric : ∀ {_∼₁_ _∼₂_} → Symmetric _∼₁_ → Symmetric _∼₂_ →
Symmetric (Pointwise _∼₁_ _∼₂_)
×-symmetric sym₁ sym₂ (x∼y₁ , x∼y₂) = sym₁ x∼y₁ , sym₂ x∼y₂
×-transitive : ∀ {_∼₁_ _∼₂_} → Transitive _∼₁_ → Transitive _∼₂_ →
Transitive (Pointwise _∼₁_ _∼₂_)
×-transitive trans₁ trans₂ x∼y y∼z =
trans₁ (proj₁ x∼y) (proj₁ y∼z) ,
trans₂ (proj₂ x∼y) (proj₂ y∼z)
×-antisymmetric : ∀ {_≈₁_ _≤₁_ _≈₂_ _≤₂_} →
Antisymmetric _≈₁_ _≤₁_ → Antisymmetric _≈₂_ _≤₂_ →
Antisymmetric (Pointwise _≈₁_ _≈₂_) (Pointwise _≤₁_ _≤₂_)
×-antisymmetric antisym₁ antisym₂ (x≤y₁ , x≤y₂) (y≤x₁ , y≤x₂) =
(antisym₁ x≤y₁ y≤x₁ , antisym₂ x≤y₂ y≤x₂)
×-asymmetric₁ : ∀ {_<₁_ _∼₂_} → Asymmetric _<₁_ →
Asymmetric (Pointwise _<₁_ _∼₂_)
×-asymmetric₁ asym₁ x<y y<x = asym₁ (proj₁ x<y) (proj₁ y<x)
×-asymmetric₂ : ∀ {_∼₁_ _<₂_} → Asymmetric _<₂_ →
Asymmetric (Pointwise _∼₁_ _<₂_)
×-asymmetric₂ asym₂ x<y y<x = asym₂ (proj₂ x<y) (proj₂ y<x)
×-respects₂ : ∀ {_≈₁_ _∼₁_ _≈₂_ _∼₂_} →
_∼₁_ Respects₂ _≈₁_ → _∼₂_ Respects₂ _≈₂_ →
(Pointwise _∼₁_ _∼₂_) Respects₂ (Pointwise _≈₁_ _≈₂_)
×-respects₂ {_≈₁_} {_∼₁_} {_≈₂_} {_∼₂_} resp₁ resp₂ = resp¹ , resp²
where
_∼_ = Pointwise _∼₁_ _∼₂_
_≈_ = Pointwise _≈₁_ _≈₂_
resp¹ : ∀ {x} → (x ∼_) Respects _≈_
resp¹ y≈y′ x∼y = proj₁ resp₁ (proj₁ y≈y′) (proj₁ x∼y) ,
proj₁ resp₂ (proj₂ y≈y′) (proj₂ x∼y)
resp² : ∀ {y} → (_∼ y) Respects _≈_
resp² x≈x′ x∼y = proj₂ resp₁ (proj₁ x≈x′) (proj₁ x∼y) ,
proj₂ resp₂ (proj₂ x≈x′) (proj₂ x∼y)
×-total : ∀ {_∼₁_ _∼₂_} → Symmetric _∼₁_ →
Total _∼₁_ → Total _∼₂_ →
Total (Pointwise _∼₁_ _∼₂_)
×-total sym₁ total₁ total₂ (x₁ , x₂) (y₁ , y₂)
with total₁ x₁ y₁ | total₂ x₂ y₂
... | inj₁ x₁∼y₁ | inj₁ x₂∼y₂ = inj₁ ( x₁∼y₁ , x₂∼y₂)
... | inj₁ x₁∼y₁ | inj₂ y₂∼x₂ = inj₂ (sym₁ x₁∼y₁ , y₂∼x₂)
... | inj₂ y₁∼x₁ | inj₂ y₂∼x₂ = inj₂ ( y₁∼x₁ , y₂∼x₂)
... | inj₂ y₁∼x₁ | inj₁ x₂∼y₂ = inj₁ (sym₁ y₁∼x₁ , x₂∼y₂)
×-decidable : ∀ {_∼₁_ _∼₂_} →
Decidable _∼₁_ → Decidable _∼₂_ →
Decidable (Pointwise _∼₁_ _∼₂_)
×-decidable _≟₁_ _≟₂_ (x₁ , x₂) (y₁ , y₂) =
(x₁ ≟₁ y₁) ×-dec (x₂ ≟₂ y₂)
×-isEquivalence : ∀ {_≈₁_ _≈₂_} →
IsEquivalence _≈₁_ → IsEquivalence _≈₂_ →
IsEquivalence (Pointwise _≈₁_ _≈₂_)
×-isEquivalence {_≈₁_ = _≈₁_} {_≈₂_ = _≈₂_} eq₁ eq₂ = record
{ refl = ×-refl {_∼₁_ = _≈₁_} {_∼₂_ = _≈₂_}
(refl eq₁) (refl eq₂)
; sym = ×-symmetric {_∼₁_ = _≈₁_} {_∼₂_ = _≈₂_}
(sym eq₁) (sym eq₂)
; trans = ×-transitive {_∼₁_ = _≈₁_} {_∼₂_ = _≈₂_}
(trans eq₁) (trans eq₂)
}
where open IsEquivalence
×-isDecEquivalence : ∀ {_≈₁_ _≈₂_} →
IsDecEquivalence _≈₁_ → IsDecEquivalence _≈₂_ →
IsDecEquivalence (Pointwise _≈₁_ _≈₂_)
×-isDecEquivalence eq₁ eq₂ = record
{ isEquivalence = ×-isEquivalence
(isEquivalence eq₁) (isEquivalence eq₂)
; _≟_ = ×-decidable (_≟_ eq₁) (_≟_ eq₂)
}
where open IsDecEquivalence
×-isPreorder : ∀ {_≈₁_ _∼₁_ _≈₂_ _∼₂_} →
IsPreorder _≈₁_ _∼₁_ → IsPreorder _≈₂_ _∼₂_ →
IsPreorder (Pointwise _≈₁_ _≈₂_) (Pointwise _∼₁_ _∼₂_)
×-isPreorder {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_} pre₁ pre₂ = record
{ isEquivalence = ×-isEquivalence
(isEquivalence pre₁) (isEquivalence pre₂)
; reflexive = ×-reflexive {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_}
(reflexive pre₁) (reflexive pre₂)
; trans = ×-transitive {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_}
(trans pre₁) (trans pre₂)
}
where open IsPreorder
×-isPartialOrder : ∀ {_≈₁_ _≤₁_ _≈₂_ _≤₂_} →
IsPartialOrder _≈₁_ _≤₁_ → IsPartialOrder _≈₂_ _≤₂_ →
IsPartialOrder (Pointwise _≈₁_ _≈₂_) (Pointwise _≤₁_ _≤₂_)
×-isPartialOrder {_≤₁_ = _≤₁_} {_≤₂_ = _≤₂_} po₁ po₂ = record
{ isPreorder = ×-isPreorder (isPreorder po₁) (isPreorder po₂)
; antisym = ×-antisymmetric {_≤₁_ = _≤₁_} {_≤₂_ = _≤₂_}
(antisym po₁) (antisym po₂)
}
where open IsPartialOrder
×-isStrictPartialOrder : ∀ {_≈₁_ _<₁_ _≈₂_ _<₂_} →
IsStrictPartialOrder _≈₁_ _<₁_ → IsStrictPartialOrder _≈₂_ _<₂_ →
IsStrictPartialOrder (Pointwise _≈₁_ _≈₂_) (Pointwise _<₁_ _<₂_)
×-isStrictPartialOrder {_<₁_ = _<₁_} {_≈₂_ = _≈₂_} {_<₂_ = _<₂_}
spo₁ spo₂ =
record
{ isEquivalence = ×-isEquivalence
(isEquivalence spo₁) (isEquivalence spo₂)
; irrefl = ×-irreflexive₁ {_<₁_ = _<₁_} {_≈₂_} {_<₂_}
(irrefl spo₁)
; trans = ×-transitive {_∼₁_ = _<₁_} {_<₂_}
(trans spo₁) (trans spo₂)
; <-resp-≈ = ×-respects₂ (<-resp-≈ spo₁) (<-resp-≈ spo₂)
}
where open IsStrictPartialOrder
module _ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} where
×-preorder : Preorder ℓ₁ ℓ₂ _ → Preorder ℓ₃ ℓ₄ _ → Preorder _ _ _
×-preorder p₁ p₂ = record
{ isPreorder = ×-isPreorder (isPreorder p₁) (isPreorder p₂)
} where open Preorder
×-setoid : Setoid ℓ₁ ℓ₂ → Setoid ℓ₃ ℓ₄ → Setoid _ _
×-setoid s₁ s₂ = record
{ isEquivalence =
×-isEquivalence (isEquivalence s₁) (isEquivalence s₂)
} where open Setoid
×-decSetoid : DecSetoid ℓ₁ ℓ₂ → DecSetoid ℓ₃ ℓ₄ → DecSetoid _ _
×-decSetoid s₁ s₂ = record
{ isDecEquivalence =
×-isDecEquivalence (isDecEquivalence s₁) (isDecEquivalence s₂)
} where open DecSetoid
×-poset : Poset ℓ₁ ℓ₂ _ → Poset ℓ₃ ℓ₄ _ → Poset _ _ _
×-poset s₁ s₂ = record
{ isPartialOrder = ×-isPartialOrder (isPartialOrder s₁)
(isPartialOrder s₂)
} where open Poset
×-strictPartialOrder :
StrictPartialOrder ℓ₁ ℓ₂ _ → StrictPartialOrder ℓ₃ ℓ₄ _ →
StrictPartialOrder _ _ _
×-strictPartialOrder s₁ s₂ = record
{ isStrictPartialOrder = ×-isStrictPartialOrder
(isStrictPartialOrder s₁)
(isStrictPartialOrder s₂)
} where open StrictPartialOrder
infix 4 _×ₛ_
_×ₛ_ : Setoid ℓ₁ ℓ₂ → Setoid ℓ₃ ℓ₄ → Setoid _ _
_×ₛ_ = ×-setoid
module _ {a b} {A : Set a} {B : Set b} where
≡×≡⇒≡ : Pointwise _≡_ _≡_ ⇒ _≡_ {A = A × B}
≡×≡⇒≡ (P.refl , P.refl) = P.refl
≡⇒≡×≡ : _≡_ {A = A × B} ⇒ Pointwise _≡_ _≡_
≡⇒≡×≡ P.refl = (P.refl , P.refl)
Pointwise-≡↔≡ : Inverse (P.setoid A ×ₛ P.setoid B) (P.setoid (A × B))
Pointwise-≡↔≡ = record
{ to = record { _⟨$⟩_ = id; cong = ≡×≡⇒≡ }
; from = record { _⟨$⟩_ = id; cong = ≡⇒≡×≡ }
; inverse-of = record
{ left-inverse-of = λ _ → (P.refl , P.refl)
; right-inverse-of = λ _ → P.refl
}
}