{-# OPTIONS --without-K --safe #-}
module Function.Construct.Symmetry where
open import Data.Product using (_,_; swap; proj₁; proj₂)
open import Function
open import Level using (Level)
open import Relation.Binary hiding (_⇔_)
open import Relation.Binary.PropositionalEquality
private
variable
a b c ℓ₁ ℓ₂ ℓ₃ : Level
A B C : Set a
module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂} {f : A → B}
((inj , surj) : Bijective ≈₁ ≈₂ f)
where
private
f⁻¹ = proj₁ ∘ surj
f∘f⁻¹≡id = proj₂ ∘ surj
injective : Symmetric ≈₂ → Transitive ≈₂ → Congruent ≈₁ ≈₂ f → Injective ≈₂ ≈₁ f⁻¹
injective sym trans cong gx≈gy = trans (trans (sym (f∘f⁻¹≡id _)) (cong gx≈gy)) (f∘f⁻¹≡id _)
surjective : Surjective ≈₂ ≈₁ f⁻¹
surjective x = f x , inj (proj₂ (surj (f x)))
bijective : Symmetric ≈₂ → Transitive ≈₂ → Congruent ≈₁ ≈₂ f → Bijective ≈₂ ≈₁ f⁻¹
bijective sym trans cong = injective sym trans cong , surjective
module _ (≈₁ : Rel A ℓ₁) (≈₂ : Rel B ℓ₂)
(f : A → B) {f⁻¹ : B → A}
where
inverseʳ : Inverseˡ ≈₁ ≈₂ f f⁻¹ → Inverseʳ ≈₂ ≈₁ f⁻¹ f
inverseʳ inv = inv
inverseˡ : Inverseʳ ≈₁ ≈₂ f f⁻¹ → Inverseˡ ≈₂ ≈₁ f⁻¹ f
inverseˡ inv = inv
inverseᵇ : Inverseᵇ ≈₁ ≈₂ f f⁻¹ → Inverseᵇ ≈₂ ≈₁ f⁻¹ f
inverseᵇ (invˡ , invʳ) = (invʳ , invˡ)
module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂}
{f : A → B} (isBij : IsBijection ≈₁ ≈₂ f)
where
private
module IB = IsBijection isBij
f⁻¹ = proj₁ ∘ IB.surjective
isBijection : Congruent ≈₂ ≈₁ f⁻¹ → IsBijection ≈₂ ≈₁ f⁻¹
isBijection f⁻¹-cong = record
{ isInjection = record
{ isCongruent = record
{ cong = f⁻¹-cong
; isEquivalence₁ = IB.Eq₂.isEquivalence
; isEquivalence₂ = IB.Eq₁.isEquivalence
}
; injective = injective IB.bijective IB.Eq₂.sym IB.Eq₂.trans IB.cong
}
; surjective = surjective {≈₂ = ≈₂} IB.bijective
}
module _ {≈₁ : Rel A ℓ₁} {f : A → B} (isBij : IsBijection ≈₁ _≡_ f) where
isBijection-≡ : IsBijection _≡_ ≈₁ _
isBijection-≡ = isBijection isBij (IB.Eq₁.reflexive ∘ cong _)
where module IB = IsBijection isBij
module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂}
{f : A → B} {f⁻¹ : B → A}
where
isCongruent : IsCongruent ≈₁ ≈₂ f → Congruent ≈₂ ≈₁ f⁻¹ → IsCongruent ≈₂ ≈₁ f⁻¹
isCongruent ic cg = record
{ cong = cg
; isEquivalence₁ = IC.isEquivalence₂
; isEquivalence₂ = IC.isEquivalence₁
} where module IC = IsCongruent ic
isLeftInverse : IsRightInverse ≈₁ ≈₂ f f⁻¹ → IsLeftInverse ≈₂ ≈₁ f⁻¹ f
isLeftInverse inv = record
{ isCongruent = isCongruent F.isCongruent F.from-cong
; from-cong = F.cong₁
; inverseˡ = inverseˡ ≈₁ ≈₂ f {f⁻¹} F.inverseʳ
} where module F = IsRightInverse inv
isRightInverse : IsLeftInverse ≈₁ ≈₂ f f⁻¹ → IsRightInverse ≈₂ ≈₁ f⁻¹ f
isRightInverse inv = record
{ isCongruent = isCongruent F.isCongruent F.from-cong
; from-cong = F.to-cong
; inverseʳ = inverseʳ ≈₁ ≈₂ f {f⁻¹} F.inverseˡ
} where module F = IsLeftInverse inv
isInverse : IsInverse ≈₁ ≈₂ f f⁻¹ → IsInverse ≈₂ ≈₁ f⁻¹ f
isInverse f-inv = record
{ isLeftInverse = isLeftInverse F.isRightInverse
; inverseʳ = inverseʳ ≈₁ ≈₂ f F.inverseˡ
} where module F = IsInverse f-inv
module _ {R : Setoid a ℓ₁} {S : Setoid b ℓ₂} (bij : Bijection R S) where
private
module IB = Bijection bij
from = proj₁ ∘ IB.surjective
bijection : Congruent IB.Eq₂._≈_ IB.Eq₁._≈_ from → Bijection S R
bijection cong = record
{ to = from
; cong = cong
; bijective = bijective IB.bijective IB.Eq₂.sym IB.Eq₂.trans IB.cong
}
bijection-≡ : {R : Setoid a ℓ₁} {B : Set b} →
Bijection R (setoid B) → Bijection (setoid B) R
bijection-≡ bij = bijection bij (B.Eq₁.reflexive ∘ cong _)
where module B = Bijection bij
module _ {R : Setoid a ℓ₁} {S : Setoid b ℓ₂} where
equivalence : Equivalence R S → Equivalence S R
equivalence equiv = record
{ to = E.from
; from = E.to
; to-cong = E.from-cong
; from-cong = E.to-cong
} where module E = Equivalence equiv
rightInverse : LeftInverse R S → RightInverse S R
rightInverse left = record
{ to = L.from
; from = L.to
; to-cong = L.from-cong
; from-cong = L.to-cong
; inverseʳ = L.inverseˡ
} where module L = LeftInverse left
leftInverse : RightInverse R S → LeftInverse S R
leftInverse right = record
{ to = R.from
; from = R.to
; to-cong = R.from-cong
; from-cong = R.to-cong
; inverseˡ = R.inverseʳ
} where module R = RightInverse right
inverse : Inverse R S → Inverse S R
inverse inv = record
{ to = I.from
; from = I.to
; to-cong = I.from-cong
; from-cong = I.to-cong
; inverse = swap I.inverse
} where module I = Inverse inv
⤖-sym : A ⤖ B → B ⤖ A
⤖-sym b = bijection b (cong _)
⇔-sym : A ⇔ B → B ⇔ A
⇔-sym = equivalence
↩-sym : A ↩ B → B ↪ A
↩-sym = rightInverse
↪-sym : A ↪ B → B ↩ A
↪-sym = leftInverse
↔-sym : A ↔ B → B ↔ A
↔-sym = inverse
sym-⤖ = ⤖-sym
{-# WARNING_ON_USAGE sym-⤖
"Warning: sym-⤖ was deprecated in v2.0.
Please use ⤖-sym instead."
#-}
sym-⇔ = ⇔-sym
{-# WARNING_ON_USAGE sym-⇔
"Warning: sym-⇔ was deprecated in v2.0.
Please use ⇔-sym instead."
#-}
sym-↩ = ↩-sym
{-# WARNING_ON_USAGE sym-↩
"Warning: sym-↩ was deprecated in v2.0.
Please use ↩-sym instead."
#-}
sym-↪ = ↪-sym
{-# WARNING_ON_USAGE sym-↪
"Warning: sym-↪ was deprecated in v2.0.
Please use ↪-sym instead."
#-}
sym-↔ = ↔-sym
{-# WARNING_ON_USAGE sym-↔
"Warning: sym-↔ was deprecated in v2.0.
Please use ↔-sym instead."
#-}