{-# OPTIONS --without-K --safe #-}
module Data.Integer.Properties where
open import Algebra.Bundles
import Algebra.Morphism as Morphism
open import Algebra.Construct.NaturalChoice.Base
import Algebra.Construct.NaturalChoice.MinMaxOp as MinMaxOp
import Algebra.Lattice.Construct.NaturalChoice.MinMaxOp as LatticeMinMaxOp
import Algebra.Properties.AbelianGroup
open import Data.Bool.Base using (T; true; false)
open import Data.Integer.Base renaming (suc to sucℤ)
open import Data.Nat as ℕ
using (ℕ; suc; zero; _∸_; s≤s; z≤n; s<s; z<s)
hiding (module ℕ)
import Data.Nat.Properties as ℕ
open import Data.Nat.Solver
open import Data.Product using (proj₁; proj₂; _,_)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Data.Sign as Sign using (Sign) renaming (_*_ to _𝕊*_)
import Data.Sign.Properties as 𝕊ₚ
open import Data.Product using (_×_)
open import Function.Base using (_∘_; _$_; id)
open import Level using (0ℓ)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no; ¬_)
import Relation.Nullary.Reflects as Reflects
open import Relation.Nullary.Negation using (contradiction)
import Relation.Nullary.Decidable as Dec
open import Algebra.Definitions {A = ℤ} _≡_
open import Algebra.Consequences.Propositional
open import Algebra.Structures {A = ℤ} _≡_
module ℤtoℕ = Morphism.Definitions ℤ ℕ _≡_
module ℕtoℤ = Morphism.Definitions ℕ ℤ _≡_
open +-*-Solver
private
variable
m n o : ℕ
i j k : ℤ
s t : Sign
+-injective : + m ≡ + n → m ≡ n
+-injective refl = refl
-[1+-injective : -[1+ m ] ≡ -[1+ n ] → m ≡ n
-[1+-injective refl = refl
+[1+-injective : +[1+ m ] ≡ +[1+ n ] → m ≡ n
+[1+-injective refl = refl
infix 4 _≟_
_≟_ : DecidableEquality ℤ
+ m ≟ + n = Dec.map′ (cong (+_)) +-injective (m ℕ.≟ n)
+ m ≟ -[1+ n ] = no λ()
-[1+ m ] ≟ + n = no λ()
-[1+ m ] ≟ -[1+ n ] = Dec.map′ (cong -[1+_]) -[1+-injective (m ℕ.≟ n)
≡-setoid : Setoid 0ℓ 0ℓ
≡-setoid = setoid ℤ
≡-decSetoid : DecSetoid 0ℓ 0ℓ
≡-decSetoid = decSetoid _≟_
drop‿+≤+ : + m ≤ + n → m ℕ.≤ n
drop‿+≤+ (+≤+ m≤n) = m≤n
drop‿-≤- : -[1+ m ] ≤ -[1+ n ] → n ℕ.≤ m
drop‿-≤- (-≤- n≤m) = n≤m
≤-reflexive : _≡_ ⇒ _≤_
≤-reflexive { -[1+ n ]} refl = -≤- ℕ.≤-refl
≤-reflexive {+ n} refl = +≤+ ℕ.≤-refl
≤-refl : Reflexive _≤_
≤-refl = ≤-reflexive refl
≤-trans : Transitive _≤_
≤-trans -≤+ (+≤+ n≤m) = -≤+
≤-trans (-≤- n≤m) -≤+ = -≤+
≤-trans (-≤- n≤m) (-≤- k≤n) = -≤- (ℕ.≤-trans k≤n n≤m)
≤-trans (+≤+ m≤n) (+≤+ n≤k) = +≤+ (ℕ.≤-trans m≤n n≤k)
≤-antisym : Antisymmetric _≡_ _≤_
≤-antisym (-≤- n≤m) (-≤- m≤n) = cong -[1+_] $ ℕ.≤-antisym m≤n n≤m
≤-antisym (+≤+ m≤n) (+≤+ n≤m) = cong (+_) $ ℕ.≤-antisym m≤n n≤m
≤-total : Total _≤_
≤-total (-[1+ m ]) (-[1+ n ]) = Sum.map -≤- -≤- (ℕ.≤-total n m)
≤-total (-[1+ m ]) (+ n ) = inj₁ -≤+
≤-total (+ m ) (-[1+ n ]) = inj₂ -≤+
≤-total (+ m ) (+ n ) = Sum.map +≤+ +≤+ (ℕ.≤-total m n)
infix 4 _≤?_
_≤?_ : Decidable _≤_
-[1+ m ] ≤? -[1+ n ] = Dec.map′ -≤- drop‿-≤- (n ℕ.≤? m)
-[1+ m ] ≤? + n = yes -≤+
+ m ≤? -[1+ n ] = no λ ()
+ m ≤? + n = Dec.map′ +≤+ drop‿+≤+ (m ℕ.≤? n)
≤-irrelevant : Irrelevant _≤_
≤-irrelevant -≤+ -≤+ = refl
≤-irrelevant (-≤- n≤m₁) (-≤- n≤m₂) = cong -≤- (ℕ.≤-irrelevant n≤m₁ n≤m₂)
≤-irrelevant (+≤+ n≤m₁) (+≤+ n≤m₂) = cong +≤+ (ℕ.≤-irrelevant n≤m₁ n≤m₂)
≤-isPreorder : IsPreorder _≡_ _≤_
≤-isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = ≤-reflexive
; trans = ≤-trans
}
≤-isTotalPreorder : IsTotalPreorder _≡_ _≤_
≤-isTotalPreorder = record
{ isPreorder = ≤-isPreorder
; total = ≤-total
}
≤-isPartialOrder : IsPartialOrder _≡_ _≤_
≤-isPartialOrder = record
{ isPreorder = ≤-isPreorder
; antisym = ≤-antisym
}
≤-isTotalOrder : IsTotalOrder _≡_ _≤_
≤-isTotalOrder = record
{ isPartialOrder = ≤-isPartialOrder
; total = ≤-total
}
≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_
≤-isDecTotalOrder = record
{ isTotalOrder = ≤-isTotalOrder
; _≟_ = _≟_
; _≤?_ = _≤?_
}
≤-preorder : Preorder 0ℓ 0ℓ 0ℓ
≤-preorder = record
{ isPreorder = ≤-isPreorder
}
≤-totalPreorder : TotalPreorder 0ℓ 0ℓ 0ℓ
≤-totalPreorder = record
{ isTotalPreorder = ≤-isTotalPreorder
}
≤-poset : Poset 0ℓ 0ℓ 0ℓ
≤-poset = record
{ isPartialOrder = ≤-isPartialOrder
}
≤-totalOrder : TotalOrder 0ℓ 0ℓ 0ℓ
≤-totalOrder = record
{ isTotalOrder = ≤-isTotalOrder
}
≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ
≤-decTotalOrder = record
{ isDecTotalOrder = ≤-isDecTotalOrder
}
≤ᵇ⇒≤ : T (i ≤ᵇ j) → i ≤ j
≤ᵇ⇒≤ {+ _} {+ _} i≤j = +≤+ (ℕ.≤ᵇ⇒≤ _ _ i≤j)
≤ᵇ⇒≤ { -[1+ _ ]} {+ _} i≤j = -≤+
≤ᵇ⇒≤ { -[1+ _ ]} { -[1+ _ ]} i≤j = -≤- (ℕ.≤ᵇ⇒≤ _ _ i≤j)
≤⇒≤ᵇ : i ≤ j → T (i ≤ᵇ j)
≤⇒≤ᵇ (-≤- n≤m) = ℕ.≤⇒≤ᵇ n≤m
≤⇒≤ᵇ -≤+ = _
≤⇒≤ᵇ (+≤+ m≤n) = ℕ.≤⇒≤ᵇ m≤n
drop‿+<+ : + m < + n → m ℕ.< n
drop‿+<+ (+<+ m<n) = m<n
drop‿-<- : -[1+ m ] < -[1+ n ] → n ℕ.< m
drop‿-<- (-<- n<m) = n<m
+≮0 : + n ≮ +0
+≮0 (+<+ ())
+≮- : + m ≮ -[1+ n ]
+≮- ()
<⇒≤ : _<_ ⇒ _≤_
<⇒≤ (-<- i<j) = -≤- (ℕ.<⇒≤ i<j)
<⇒≤ -<+ = -≤+
<⇒≤ (+<+ i<j) = +≤+ (ℕ.<⇒≤ i<j)
<⇒≢ : _<_ ⇒ _≢_
<⇒≢ (-<- n<m) refl = ℕ.<⇒≢ n<m refl
<⇒≢ (+<+ m<n) refl = ℕ.<⇒≢ m<n refl
<⇒≱ : _<_ ⇒ _≱_
<⇒≱ (-<- n<m) = ℕ.<⇒≱ n<m ∘ drop‿-≤-
<⇒≱ (+<+ m<n) = ℕ.<⇒≱ m<n ∘ drop‿+≤+
≤⇒≯ : _≤_ ⇒ _≯_
≤⇒≯ (-≤- n≤m) (-<- n<m) = ℕ.≤⇒≯ n≤m n<m
≤⇒≯ -≤+ = +≮-
≤⇒≯ (+≤+ m≤n) (+<+ m<n) = ℕ.≤⇒≯ m≤n m<n
≰⇒> : _≰_ ⇒ _>_
≰⇒> {+ n} {+_ n₁} i≰j = +<+ (ℕ.≰⇒> (i≰j ∘ +≤+))
≰⇒> {+ n} { -[1+_] n₁} i≰j = -<+
≰⇒> { -[1+_] n} {+_ n₁} i≰j = contradiction -≤+ i≰j
≰⇒> { -[1+_] n} { -[1+_] n₁} i≰j = -<- (ℕ.≰⇒> (i≰j ∘ -≤-))
≮⇒≥ : _≮_ ⇒ _≥_
≮⇒≥ {+ i} {+ j} i≮j = +≤+ (ℕ.≮⇒≥ (i≮j ∘ +<+))
≮⇒≥ {+ i} { -[1+_] j} i≮j = -≤+
≮⇒≥ { -[1+_] i} {+ j} i≮j = contradiction -<+ i≮j
≮⇒≥ { -[1+_] i} { -[1+_] j} i≮j = -≤- (ℕ.≮⇒≥ (i≮j ∘ -<-))
>⇒≰ : _>_ ⇒ _≰_
>⇒≰ = <⇒≱
≤∧≢⇒< : i ≤ j → i ≢ j → i < j
≤∧≢⇒< (-≤- m≤n) i≢j = -<- (ℕ.≤∧≢⇒< m≤n (i≢j ∘ cong -[1+_] ∘ sym))
≤∧≢⇒< -≤+ i≢j = -<+
≤∧≢⇒< (+≤+ n≤m) i≢j = +<+ (ℕ.≤∧≢⇒< n≤m (i≢j ∘ cong (+_)))
≤∧≮⇒≡ : i ≤ j → i ≮ j → i ≡ j
≤∧≮⇒≡ i≤j i≮j = ≤-antisym i≤j (≮⇒≥ i≮j)
<-irrefl : Irreflexive _≡_ _<_
<-irrefl { -[1+ n ]} refl = ℕ.<-irrefl refl ∘ drop‿-<-
<-irrefl { +0} refl (+<+ ())
<-irrefl { +[1+ n ]} refl = ℕ.<-irrefl refl ∘ drop‿+<+
<-asym : Asymmetric _<_
<-asym (-<- n<m) = ℕ.<-asym n<m ∘ drop‿-<-
<-asym (+<+ m<n) = ℕ.<-asym m<n ∘ drop‿+<+
≤-<-trans : Trans _≤_ _<_ _<_
≤-<-trans (-≤- n≤m) (-<- o<n) = -<- (ℕ.<-transˡ o<n n≤m)
≤-<-trans (-≤- n≤m) -<+ = -<+
≤-<-trans -≤+ (+<+ m<o) = -<+
≤-<-trans (+≤+ m≤n) (+<+ n<o) = +<+ (ℕ.<-transʳ m≤n n<o)
<-≤-trans : Trans _<_ _≤_ _<_
<-≤-trans (-<- n<m) (-≤- o≤n) = -<- (ℕ.<-transʳ o≤n n<m)
<-≤-trans (-<- n<m) -≤+ = -<+
<-≤-trans -<+ (+≤+ m≤n) = -<+
<-≤-trans (+<+ m<n) (+≤+ n≤o) = +<+ (ℕ.<-transˡ m<n n≤o)
<-trans : Transitive _<_
<-trans m<n n<p = ≤-<-trans (<⇒≤ m<n) n<p
<-cmp : Trichotomous _≡_ _<_
<-cmp +0 +0 = tri≈ +≮0 refl +≮0
<-cmp +0 +[1+ n ] = tri< (+<+ z<s) (λ()) +≮0
<-cmp +[1+ n ] +0 = tri> +≮0 (λ()) (+<+ z<s)
<-cmp (+ m) -[1+ n ] = tri> +≮- (λ()) -<+
<-cmp -[1+ m ] (+ n) = tri< -<+ (λ()) +≮-
<-cmp -[1+ m ] -[1+ n ] with ℕ.<-cmp m n
... | tri< m<n m≢n n≯m = tri> (n≯m ∘ drop‿-<-) (m≢n ∘ -[1+-injective) (-<- m<n)
... | tri≈ m≮n m≡n n≯m = tri≈ (n≯m ∘ drop‿-<-) (cong -[1+_] m≡n) (m≮n ∘ drop‿-<-)
... | tri> m≮n m≢n n>m = tri< (-<- n>m) (m≢n ∘ -[1+-injective) (m≮n ∘ drop‿-<-)
<-cmp +[1+ m ] +[1+ n ] with ℕ.<-cmp m n
... | tri< m<n m≢n n≯m = tri< (+<+ (s<s m<n)) (m≢n ∘ +[1+-injective) (n≯m ∘ ℕ.≤-pred ∘ drop‿+<+)
... | tri≈ m≮n m≡n n≯m = tri≈ (m≮n ∘ ℕ.≤-pred ∘ drop‿+<+) (cong (+_ ∘ suc) m≡n) (n≯m ∘ ℕ.≤-pred ∘ drop‿+<+)
... | tri> m≮n m≢n n>m = tri> (m≮n ∘ ℕ.≤-pred ∘ drop‿+<+) (m≢n ∘ +[1+-injective) (+<+ (s<s n>m))
infix 4 _<?_
_<?_ : Decidable _<_
-[1+ m ] <? -[1+ n ] = Dec.map′ -<- drop‿-<- (n ℕ.<? m)
-[1+ m ] <? + n = yes -<+
+ m <? -[1+ n ] = no λ()
+ m <? + n = Dec.map′ +<+ drop‿+<+ (m ℕ.<? n)
<-irrelevant : Irrelevant _<_
<-irrelevant (-<- n<m₁) (-<- n<m₂) = cong -<- (ℕ.<-irrelevant n<m₁ n<m₂)
<-irrelevant -<+ -<+ = refl
<-irrelevant (+<+ m<n₁) (+<+ m<n₂) = cong +<+ (ℕ.<-irrelevant m<n₁ m<n₂)
<-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_
<-isStrictPartialOrder = record
{ isEquivalence = isEquivalence
; irrefl = <-irrefl
; trans = <-trans
; <-resp-≈ = subst (_ <_) , subst (_< _)
}
<-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_
<-isStrictTotalOrder = record
{ isEquivalence = isEquivalence
; trans = <-trans
; compare = <-cmp
}
<-strictPartialOrder : StrictPartialOrder 0ℓ 0ℓ 0ℓ
<-strictPartialOrder = record
{ isStrictPartialOrder = <-isStrictPartialOrder
}
<-strictTotalOrder : StrictTotalOrder 0ℓ 0ℓ 0ℓ
<-strictTotalOrder = record
{ isStrictTotalOrder = <-isStrictTotalOrder
}
i≮i : i ≮ i
i≮i = <-irrefl refl
>-irrefl : Irreflexive _≡_ _>_
>-irrefl = <-irrefl ∘ sym
module ≤-Reasoning where
open import Relation.Binary.Reasoning.Base.Triple
≤-isPreorder
<-trans
(resp₂ _<_)
<⇒≤
<-≤-trans
≤-<-trans
public
hiding (step-≈; step-≈˘)
positive⁻¹ : ∀ i → .{{Positive i}} → i > 0ℤ
positive⁻¹ +[1+ n ] = +<+ z<s
negative⁻¹ : ∀ i → .{{Negative i}} → i < 0ℤ
negative⁻¹ -[1+ n ] = -<+
nonPositive⁻¹ : ∀ i → .{{NonPositive i}} → i ≤ 0ℤ
nonPositive⁻¹ +0 = +≤+ z≤n
nonPositive⁻¹ -[1+ n ] = -≤+
nonNegative⁻¹ : ∀ i → .{{NonNegative i}} → i ≥ 0ℤ
nonNegative⁻¹ (+ n) = +≤+ z≤n
negative<positive : ∀ i j → .{{Negative i}} → .{{Positive j}} → i < j
negative<positive i j = <-trans (negative⁻¹ i) (positive⁻¹ j)
neg-involutive : ∀ i → - - i ≡ i
neg-involutive -[1+ n ] = refl
neg-involutive +0 = refl
neg-involutive +[1+ n ] = refl
neg-injective : - i ≡ - j → i ≡ j
neg-injective {i} {j} -i≡-j = begin
i ≡˘⟨ neg-involutive i ⟩
- - i ≡⟨ cong -_ -i≡-j ⟩
- - j ≡⟨ neg-involutive j ⟩
j ∎ where open ≡-Reasoning
neg-≤-pos : ∀ {m n} → - (+ m) ≤ + n
neg-≤-pos {zero} = +≤+ z≤n
neg-≤-pos {suc m} = -≤+
neg-mono-≤ : -_ Preserves _≤_ ⟶ _≥_
neg-mono-≤ -≤+ = neg-≤-pos
neg-mono-≤ (-≤- n≤m) = +≤+ (s≤s n≤m)
neg-mono-≤ (+≤+ z≤n) = neg-≤-pos
neg-mono-≤ (+≤+ (s≤s m≤n)) = -≤- m≤n
neg-cancel-≤ : - i ≤ - j → i ≥ j
neg-cancel-≤ { +[1+ m ]} { +[1+ n ]} (-≤- n≤m) = +≤+ (s≤s n≤m)
neg-cancel-≤ { +[1+ m ]} { +0} -≤+ = +≤+ z≤n
neg-cancel-≤ { +[1+ m ]} { -[1+ n ]} -≤+ = -≤+
neg-cancel-≤ { +0} { +0} _ = +≤+ z≤n
neg-cancel-≤ { +0} { -[1+ n ]} _ = -≤+
neg-cancel-≤ { -[1+ m ]} { +0} (+≤+ ())
neg-cancel-≤ { -[1+ m ]} { -[1+ n ]} (+≤+ (s≤s m≤n)) = -≤- m≤n
neg-mono-< : -_ Preserves _<_ ⟶ _>_
neg-mono-< { -[1+ _ ]} { -[1+ _ ]} (-<- n<m) = +<+ (s<s n<m)
neg-mono-< { -[1+ _ ]} { +0} -<+ = +<+ z<s
neg-mono-< { -[1+ _ ]} { +[1+ n ]} -<+ = -<+
neg-mono-< { +0} { +[1+ n ]} (+<+ _) = -<+
neg-mono-< { +[1+ m ]} { +[1+ n ]} (+<+ m<n) = -<- (ℕ.≤-pred m<n)
neg-cancel-< : - i < - j → i > j
neg-cancel-< { +[1+ m ]} { +[1+ n ]} (-<- n<m) = +<+ (s<s n<m)
neg-cancel-< { +[1+ m ]} { +0} -<+ = +<+ z<s
neg-cancel-< { +[1+ m ]} { -[1+ n ]} -<+ = -<+
neg-cancel-< { +0} { +0} (+<+ ())
neg-cancel-< { +0} { -[1+ n ]} _ = -<+
neg-cancel-< { -[1+ m ]} { +0} (+<+ ())
neg-cancel-< { -[1+ m ]} { -[1+ n ]} (+<+ (s<s m<n)) = -<- m<n
∣i∣≡0⇒i≡0 : ∣ i ∣ ≡ 0 → i ≡ + 0
∣i∣≡0⇒i≡0 {+0} refl = refl
∣-i∣≡∣i∣ : ∀ i → ∣ - i ∣ ≡ ∣ i ∣
∣-i∣≡∣i∣ -[1+ n ] = refl
∣-i∣≡∣i∣ +0 = refl
∣-i∣≡∣i∣ +[1+ n ] = refl
0≤i⇒+∣i∣≡i : 0ℤ ≤ i → + ∣ i ∣ ≡ i
0≤i⇒+∣i∣≡i (+≤+ _) = refl
+∣i∣≡i⇒0≤i : + ∣ i ∣ ≡ i → 0ℤ ≤ i
+∣i∣≡i⇒0≤i {+ n} _ = +≤+ z≤n
+∣i∣≡i⊎+∣i∣≡-i : ∀ i → + ∣ i ∣ ≡ i ⊎ + ∣ i ∣ ≡ - i
+∣i∣≡i⊎+∣i∣≡-i (+ n) = inj₁ refl
+∣i∣≡i⊎+∣i∣≡-i (-[1+ n ]) = inj₂ refl
∣m⊝n∣≤m⊔n : ∀ m n → ∣ m ⊖ n ∣ ℕ.≤ m ℕ.⊔ n
∣m⊝n∣≤m⊔n m n with m ℕ.<ᵇ n
... | true = begin
∣ - + (n ℕ.∸ m) ∣ ≡⟨ ∣-i∣≡∣i∣ (+ (n ℕ.∸ m)) ⟩
∣ + (n ℕ.∸ m) ∣ ≡⟨⟩
n ℕ.∸ m ≤⟨ ℕ.m∸n≤m n m ⟩
n ≤⟨ ℕ.m≤n⊔m m n ⟩
m ℕ.⊔ n ∎
where open ℕ.≤-Reasoning
... | false = begin
∣ + (m ℕ.∸ n) ∣ ≡⟨⟩
m ℕ.∸ n ≤⟨ ℕ.m∸n≤m m n ⟩
m ≤⟨ ℕ.m≤m⊔n m n ⟩
m ℕ.⊔ n ∎
where open ℕ.≤-Reasoning
∣i+j∣≤∣i∣+∣j∣ : ∀ i j → ∣ i + j ∣ ℕ.≤ ∣ i ∣ ℕ.+ ∣ j ∣
∣i+j∣≤∣i∣+∣j∣ +[1+ m ] (+ n) = ℕ.≤-refl
∣i+j∣≤∣i∣+∣j∣ +0 (+ n) = ℕ.≤-refl
∣i+j∣≤∣i∣+∣j∣ +0 -[1+ n ] = ℕ.≤-refl
∣i+j∣≤∣i∣+∣j∣ -[1+ m ] -[1+ n ] rewrite ℕ.+-suc (suc m) n = ℕ.≤-refl
∣i+j∣≤∣i∣+∣j∣ +[1+ m ] -[1+ n ] = begin
∣ suc m ⊖ suc n ∣ ≤⟨ ∣m⊝n∣≤m⊔n (suc m) (suc n) ⟩
suc m ℕ.⊔ suc n ≤⟨ ℕ.m⊔n≤m+n (suc m) (suc n) ⟩
suc m ℕ.+ suc n ∎
where open ℕ.≤-Reasoning
∣i+j∣≤∣i∣+∣j∣ -[1+ m ] (+ n) = begin
∣ n ⊖ suc m ∣ ≤⟨ ∣m⊝n∣≤m⊔n n (suc m) ⟩
n ℕ.⊔ suc m ≤⟨ ℕ.m⊔n≤m+n n (suc m) ⟩
n ℕ.+ suc m ≡⟨ ℕ.+-comm n (suc m) ⟩
suc m ℕ.+ n ∎
where open ℕ.≤-Reasoning
∣i-j∣≤∣i∣+∣j∣ : ∀ i j → ∣ i - j ∣ ℕ.≤ ∣ i ∣ ℕ.+ ∣ j ∣
∣i-j∣≤∣i∣+∣j∣ i j = begin
∣ i - j ∣ ≤⟨ ∣i+j∣≤∣i∣+∣j∣ i (- j) ⟩
∣ i ∣ ℕ.+ ∣ - j ∣ ≡⟨ cong (∣ i ∣ ℕ.+_) (∣-i∣≡∣i∣ j) ⟩
∣ i ∣ ℕ.+ ∣ j ∣ ∎
where open ℕ.≤-Reasoning
◃-inverse : ∀ i → sign i ◃ ∣ i ∣ ≡ i
◃-inverse -[1+ n ] = refl
◃-inverse +0 = refl
◃-inverse +[1+ n ] = refl
◃-cong : sign i ≡ sign j → ∣ i ∣ ≡ ∣ j ∣ → i ≡ j
◃-cong {+ m} {+ n } ≡-sign refl = refl
◃-cong { -[1+ m ]} { -[1+ n ]} ≡-sign refl = refl
+◃n≡+n : ∀ n → Sign.+ ◃ n ≡ + n
+◃n≡+n zero = refl
+◃n≡+n (suc _) = refl
-◃n≡-n : ∀ n → Sign.- ◃ n ≡ - + n
-◃n≡-n zero = refl
-◃n≡-n (suc _) = refl
sign-◃ : ∀ s n .{{_ : ℕ.NonZero n}} → sign (s ◃ n) ≡ s
sign-◃ Sign.- (suc _) = refl
sign-◃ Sign.+ (suc _) = refl
abs-◃ : ∀ s n → ∣ s ◃ n ∣ ≡ n
abs-◃ _ zero = refl
abs-◃ Sign.- (suc n) = refl
abs-◃ Sign.+ (suc n) = refl
signᵢ◃∣i∣≡i : ∀ i → sign i ◃ ∣ i ∣ ≡ i
signᵢ◃∣i∣≡i (+ n) = +◃n≡+n n
signᵢ◃∣i∣≡i -[1+ n ] = refl
sign-cong : .{{_ : ℕ.NonZero m}} .{{_ : ℕ.NonZero n}} →
s ◃ m ≡ t ◃ n → s ≡ t
sign-cong {n@(suc _)} {m@(suc _)} {s} {t} eq = begin
s ≡˘⟨ sign-◃ s n ⟩
sign (s ◃ n) ≡⟨ cong sign eq ⟩
sign (t ◃ m) ≡⟨ sign-◃ t m ⟩
t ∎ where open ≡-Reasoning
sign-cong′ : s ◃ m ≡ t ◃ n → s ≡ t ⊎ (m ≡ 0 × n ≡ 0)
sign-cong′ {s} {zero} {t} {zero} eq = inj₂ (refl , refl)
sign-cong′ {s} {zero} {Sign.- } {suc n} ()
sign-cong′ {s} {zero} {Sign.+ } {suc n} ()
sign-cong′ {Sign.- } {suc m} {t} {zero} ()
sign-cong′ {Sign.+ } {suc m} {t} {zero} ()
sign-cong′ {s} {suc m} {t} {suc n} eq = inj₁ (sign-cong eq)
abs-cong : s ◃ m ≡ t ◃ n → m ≡ n
abs-cong {s} {m} {t} {n} eq = begin
m ≡˘⟨ abs-◃ s m ⟩
∣ s ◃ m ∣ ≡⟨ cong ∣_∣ eq ⟩
∣ t ◃ n ∣ ≡⟨ abs-◃ t n ⟩
n ∎ where open ≡-Reasoning
∣s◃m∣*∣t◃n∣≡m*n : ∀ s t m n → ∣ s ◃ m ∣ ℕ.* ∣ t ◃ n ∣ ≡ m ℕ.* n
∣s◃m∣*∣t◃n∣≡m*n s t m n = cong₂ ℕ._*_ (abs-◃ s m) (abs-◃ t n)
+◃-mono-< : m ℕ.< n → Sign.+ ◃ m < Sign.+ ◃ n
+◃-mono-< {zero} {suc n} m<n = +<+ m<n
+◃-mono-< {suc m} {suc n} m<n = +<+ m<n
+◃-cancel-< : Sign.+ ◃ m < Sign.+ ◃ n → m ℕ.< n
+◃-cancel-< {zero} {zero} (+<+ ())
+◃-cancel-< {suc m} {zero} (+<+ ())
+◃-cancel-< {zero} {suc n} (+<+ m<n) = m<n
+◃-cancel-< {suc m} {suc n} (+<+ m<n) = m<n
neg◃-cancel-< : Sign.- ◃ m < Sign.- ◃ n → n ℕ.< m
neg◃-cancel-< {zero} {zero} (+<+ ())
neg◃-cancel-< {suc m} {zero} -<+ = s≤s z≤n
neg◃-cancel-< {suc m} {suc n} (-<- n<m) = s≤s n<m
-◃<+◃ : ∀ m n .{{_ : ℕ.NonZero m}} → Sign.- ◃ m < Sign.+ ◃ n
-◃<+◃ (suc _) zero = -<+
-◃<+◃ (suc _) (suc _) = -<+
+◃≮-◃ : Sign.+ ◃ m ≮ Sign.- ◃ n
+◃≮-◃ {zero} {zero} (+<+ ())
+◃≮-◃ {suc m} {zero} (+<+ ())
n⊖n≡0 : ∀ n → n ⊖ n ≡ 0ℤ
n⊖n≡0 n with n ℕ.<ᵇ n in leq
... | true = cong (-_ ∘ +_) (ℕ.n∸n≡0 n)
... | false = cong +_ (ℕ.n∸n≡0 n)
[1+m]⊖[1+n]≡m⊖n : ∀ m n → suc m ⊖ suc n ≡ m ⊖ n
[1+m]⊖[1+n]≡m⊖n m n with m ℕ.<ᵇ n
... | true = refl
... | false = refl
⊖-swap : ∀ m n → m ⊖ n ≡ - (n ⊖ m)
⊖-swap zero zero = refl
⊖-swap zero (suc m) = refl
⊖-swap (suc m) zero = refl
⊖-swap (suc m) (suc n) = begin
suc m ⊖ suc n ≡⟨ [1+m]⊖[1+n]≡m⊖n m n ⟩
m ⊖ n ≡⟨ ⊖-swap m n ⟩
- (n ⊖ m) ≡˘⟨ cong -_ ([1+m]⊖[1+n]≡m⊖n n m) ⟩
- (suc n ⊖ suc m) ∎ where open ≡-Reasoning
⊖-≥ : m ℕ.≥ n → m ⊖ n ≡ + (m ∸ n)
⊖-≥ {m} {n} p with m ℕ.<ᵇ n | Reflects.invert (ℕ.<ᵇ-reflects-< m n)
... | true | q = contradiction (ℕ.<-transʳ p q) (ℕ.<-irrefl refl)
... | false | q = refl
≤-⊖ : m ℕ.≤ n → n ⊖ m ≡ + (n ∸ m)
≤-⊖ (z≤n {n}) = refl
≤-⊖ (s≤s {m} {n} p) = begin
suc n ⊖ suc m ≡⟨ [1+m]⊖[1+n]≡m⊖n n m ⟩
n ⊖ m ≡⟨ ≤-⊖ p ⟩
+ (n ∸ m) ≡⟨⟩
+ (suc n ∸ suc m) ∎ where open ≡-Reasoning
⊖-≤ : m ℕ.≤ n → m ⊖ n ≡ - + (n ∸ m)
⊖-≤ {m} {n} p with m ℕ.<ᵇ n | Reflects.invert (ℕ.<ᵇ-reflects-< m n)
... | true | q = refl
... | false | q rewrite ℕ.≤-antisym p (ℕ.≮⇒≥ q) | ℕ.n∸n≡0 n = refl
⊖-< : m ℕ.< n → m ⊖ n ≡ - + (n ∸ m)
⊖-< = ⊖-≤ ∘ ℕ.<⇒≤
⊖-≰ : n ℕ.≰ m → m ⊖ n ≡ - + (n ∸ m)
⊖-≰ = ⊖-< ∘ ℕ.≰⇒>
∣⊖∣-≤ : m ℕ.≤ n → ∣ m ⊖ n ∣ ≡ n ∸ m
∣⊖∣-≤ {m} {n} p = begin
∣ m ⊖ n ∣ ≡⟨ cong ∣_∣ (⊖-≤ p) ⟩
∣ - (+ (n ∸ m)) ∣ ≡⟨ ∣-i∣≡∣i∣ (+ (n ∸ m)) ⟩
∣ + (n ∸ m) ∣ ≡⟨⟩
n ∸ m ∎ where open ≡-Reasoning
∣⊖∣-< : m ℕ.< n → ∣ m ⊖ n ∣ ≡ n ∸ m
∣⊖∣-< {m} {n} p = begin
∣ m ⊖ n ∣ ≡⟨ cong ∣_∣ (⊖-< p) ⟩
∣ - (+ (n ∸ m)) ∣ ≡⟨ ∣-i∣≡∣i∣ (+ (n ∸ m)) ⟩
∣ + (n ∸ m) ∣ ≡⟨⟩
n ∸ m ∎ where open ≡-Reasoning
∣⊖∣-≰ : n ℕ.≰ m → ∣ m ⊖ n ∣ ≡ n ∸ m
∣⊖∣-≰ = ∣⊖∣-< ∘ ℕ.≰⇒>
-m+n≡n⊖m : ∀ m n → - (+ m) + + n ≡ n ⊖ m
-m+n≡n⊖m zero n = refl
-m+n≡n⊖m (suc m) n = refl
m-n≡m⊖n : ∀ m n → + m + (- + n) ≡ m ⊖ n
m-n≡m⊖n zero zero = refl
m-n≡m⊖n zero (suc n) = refl
m-n≡m⊖n (suc m) zero = cong +[1+_] (ℕ.+-identityʳ m)
m-n≡m⊖n (suc m) (suc n) = refl
-[n⊖m]≡-m+n : ∀ m n → - (m ⊖ n) ≡ (- (+ m)) + (+ n)
-[n⊖m]≡-m+n m n with m ℕ.<ᵇ n | Reflects.invert (ℕ.<ᵇ-reflects-< m n)
... | true | p = begin
- (- (+ (n ∸ m))) ≡⟨ neg-involutive (+ (n ∸ m)) ⟩
+ (n ∸ m) ≡˘⟨ ⊖-≥ (ℕ.≤-trans (ℕ.m≤n+m m 1) p) ⟩
n ⊖ m ≡˘⟨ -m+n≡n⊖m m n ⟩
- (+ m) + + n ∎ where open ≡-Reasoning
... | false | p = begin
- (+ (m ∸ n)) ≡˘⟨ ⊖-≤ (ℕ.≮⇒≥ p) ⟩
n ⊖ m ≡˘⟨ -m+n≡n⊖m m n ⟩
- (+ m) + + n ∎ where open ≡-Reasoning
∣m⊖n∣≡∣n⊖m∣ : ∀ m n → ∣ m ⊖ n ∣ ≡ ∣ n ⊖ m ∣
∣m⊖n∣≡∣n⊖m∣ m n = begin
∣ m ⊖ n ∣ ≡⟨ cong ∣_∣ (⊖-swap m n) ⟩
∣ - (n ⊖ m) ∣ ≡⟨ ∣-i∣≡∣i∣ (n ⊖ m) ⟩
∣ n ⊖ m ∣ ∎ where open ≡-Reasoning
+-cancelˡ-⊖ : ∀ m n o → (m ℕ.+ n) ⊖ (m ℕ.+ o) ≡ n ⊖ o
+-cancelˡ-⊖ zero n o = refl
+-cancelˡ-⊖ (suc m) n o = begin
suc (m ℕ.+ n) ⊖ suc (m ℕ.+ o) ≡⟨ [1+m]⊖[1+n]≡m⊖n (m ℕ.+ n) (m ℕ.+ o) ⟩
m ℕ.+ n ⊖ (m ℕ.+ o) ≡⟨ +-cancelˡ-⊖ m n o ⟩
n ⊖ o ∎ where open ≡-Reasoning
m⊖n≤m : ∀ m n → m ⊖ n ≤ + m
m⊖n≤m m zero = ≤-refl
m⊖n≤m zero (suc n) = -≤+
m⊖n≤m (suc m) (suc n) = begin
suc m ⊖ suc n ≡⟨ [1+m]⊖[1+n]≡m⊖n m n ⟩
m ⊖ n ≤⟨ m⊖n≤m m n ⟩
+ m ≤⟨ +≤+ (ℕ.n≤1+n m) ⟩
+[1+ m ] ∎ where open ≤-Reasoning
m⊖n<1+m : ∀ m n → m ⊖ n < +[1+ m ]
m⊖n<1+m m n = ≤-<-trans (m⊖n≤m m n) (+<+ (ℕ.m<n+m m z<s))
m⊖1+n<m : ∀ m n .{{_ : ℕ.NonZero n}} → m ⊖ n < + m
m⊖1+n<m zero (suc n) = -<+
m⊖1+n<m (suc m) (suc n) = begin-strict
suc m ⊖ suc n ≡⟨ [1+m]⊖[1+n]≡m⊖n m n ⟩
m ⊖ n <⟨ m⊖n<1+m m n ⟩
+[1+ m ] ∎ where open ≤-Reasoning
-1+m<n⊖m : ∀ m n → -[1+ m ] < n ⊖ m
-1+m<n⊖m zero n = -<+
-1+m<n⊖m (suc m) zero = -<- ℕ.≤-refl
-1+m<n⊖m (suc m) (suc n) = begin-strict
-[1+ suc m ] <⟨ -<- ℕ.≤-refl ⟩
-[1+ m ] <⟨ -1+m<n⊖m m n ⟩
n ⊖ m ≡˘⟨ [1+m]⊖[1+n]≡m⊖n n m ⟩
suc n ⊖ suc m ∎ where open ≤-Reasoning
-[1+m]≤n⊖m+1 : ∀ m n → -[1+ m ] ≤ n ⊖ suc m
-[1+m]≤n⊖m+1 m zero = ≤-refl
-[1+m]≤n⊖m+1 m (suc n) = begin
-[1+ m ] ≤⟨ <⇒≤ (-1+m<n⊖m m n) ⟩
n ⊖ m ≡˘⟨ [1+m]⊖[1+n]≡m⊖n n m ⟩
suc n ⊖ suc m ∎ where open ≤-Reasoning
-1+m≤n⊖m : ∀ m n → -[1+ m ] ≤ n ⊖ m
-1+m≤n⊖m m n = <⇒≤ (-1+m<n⊖m m n)
0⊖m≤+ : ∀ m {n} → 0 ⊖ m ≤ + n
0⊖m≤+ zero = +≤+ z≤n
0⊖m≤+ (suc m) = -≤+
sign-⊖-< : m ℕ.< n → sign (m ⊖ n) ≡ Sign.-
sign-⊖-< {zero} (ℕ.s≤s z≤n) = refl
sign-⊖-< {suc m} {suc n} (ℕ.s≤s m<n) = begin
sign (suc m ⊖ suc n) ≡⟨ cong sign ([1+m]⊖[1+n]≡m⊖n m n) ⟩
sign (m ⊖ n) ≡⟨ sign-⊖-< m<n ⟩
Sign.- ∎ where open ≡-Reasoning
sign-⊖-≰ : n ℕ.≰ m → sign (m ⊖ n) ≡ Sign.-
sign-⊖-≰ = sign-⊖-< ∘ ℕ.≰⇒>
⊖-monoʳ-≥-≤ : ∀ n → (n ⊖_) Preserves ℕ._≥_ ⟶ _≤_
⊖-monoʳ-≥-≤ zero {m} z≤n = 0⊖m≤+ m
⊖-monoʳ-≥-≤ zero {_} (s≤s m≤n) = -≤- m≤n
⊖-monoʳ-≥-≤ (suc n) {zero} z≤n = ≤-refl
⊖-monoʳ-≥-≤ (suc n) {suc m} z≤n = begin
suc n ⊖ suc m ≡⟨ [1+m]⊖[1+n]≡m⊖n n m ⟩
n ⊖ m <⟨ m⊖n<1+m n m ⟩
+[1+ n ] ∎ where open ≤-Reasoning
⊖-monoʳ-≥-≤ (suc n) {suc m} {suc o} (s≤s m≤o) = begin
suc n ⊖ suc m ≡⟨ [1+m]⊖[1+n]≡m⊖n n m ⟩
n ⊖ m ≤⟨ ⊖-monoʳ-≥-≤ n m≤o ⟩
n ⊖ o ≡˘⟨ [1+m]⊖[1+n]≡m⊖n n o ⟩
suc n ⊖ suc o ∎ where open ≤-Reasoning
⊖-monoˡ-≤ : ∀ n → (_⊖ n) Preserves ℕ._≤_ ⟶ _≤_
⊖-monoˡ-≤ zero {_} {_} m≤o = +≤+ m≤o
⊖-monoˡ-≤ (suc n) {_} {0} z≤n = ≤-refl
⊖-monoˡ-≤ (suc n) {_} {suc o} z≤n = begin
zero ⊖ suc n ≤⟨ ⊖-monoʳ-≥-≤ 0 (ℕ.n≤1+n n) ⟩
zero ⊖ n ≤⟨ ⊖-monoˡ-≤ n z≤n ⟩
o ⊖ n ≡˘⟨ [1+m]⊖[1+n]≡m⊖n o n ⟩
suc o ⊖ suc n ∎ where open ≤-Reasoning
⊖-monoˡ-≤ (suc n) {suc m} {suc o} (s≤s m≤o) = begin
suc m ⊖ suc n ≡⟨ [1+m]⊖[1+n]≡m⊖n m n ⟩
m ⊖ n ≤⟨ ⊖-monoˡ-≤ n m≤o ⟩
o ⊖ n ≡˘⟨ [1+m]⊖[1+n]≡m⊖n o n ⟩
suc o ⊖ suc n ∎ where open ≤-Reasoning
⊖-monoʳ->-< : ∀ p → (p ⊖_) Preserves ℕ._>_ ⟶ _<_
⊖-monoʳ->-< zero {_} z<s = -<+
⊖-monoʳ->-< zero {_} (s<s m<n@(s≤s _)) = -<- m<n
⊖-monoʳ->-< (suc p) {suc m} z<s = begin-strict
suc p ⊖ suc m ≡⟨ [1+m]⊖[1+n]≡m⊖n p m ⟩
p ⊖ m <⟨ m⊖n<1+m p m ⟩
+[1+ p ] ∎ where open ≤-Reasoning
⊖-monoʳ->-< (suc p) {suc m} {suc n} (s<s m<n@(s≤s _)) = begin-strict
suc p ⊖ suc m ≡⟨ [1+m]⊖[1+n]≡m⊖n p m ⟩
p ⊖ m <⟨ ⊖-monoʳ->-< p m<n ⟩
p ⊖ n ≡˘⟨ [1+m]⊖[1+n]≡m⊖n p n ⟩
suc p ⊖ suc n ∎ where open ≤-Reasoning
⊖-monoˡ-< : ∀ n → (_⊖ n) Preserves ℕ._<_ ⟶ _<_
⊖-monoˡ-< zero m<o = +<+ m<o
⊖-monoˡ-< (suc n) {_} {suc o} z<s = begin-strict
-[1+ n ] <⟨ -1+m<n⊖m n _ ⟩
o ⊖ n ≡˘⟨ [1+m]⊖[1+n]≡m⊖n o n ⟩
suc o ⊖ suc n ∎ where open ≤-Reasoning
⊖-monoˡ-< (suc n) {suc m} {suc (suc o)} (s<s m<o@(s≤s _)) = begin-strict
suc m ⊖ suc n ≡⟨ [1+m]⊖[1+n]≡m⊖n m n ⟩
m ⊖ n <⟨ ⊖-monoˡ-< n m<o ⟩
suc o ⊖ n ≡˘⟨ [1+m]⊖[1+n]≡m⊖n (suc o) n ⟩
suc (suc o) ⊖ suc n ∎ where open ≤-Reasoning
+-comm : Commutative _+_
+-comm -[1+ m ] -[1+ n ] = cong (-[1+_] ∘ suc) (ℕ.+-comm m n)
+-comm (+ m) (+ n) = cong +_ (ℕ.+-comm m n)
+-comm -[1+ _ ] (+ _) = refl
+-comm (+ _) -[1+ _ ] = refl
+-identityˡ : LeftIdentity +0 _+_
+-identityˡ -[1+ _ ] = refl
+-identityˡ (+ _) = refl
+-identityʳ : RightIdentity +0 _+_
+-identityʳ = comm+idˡ⇒idʳ +-comm +-identityˡ
+-identity : Identity +0 _+_
+-identity = +-identityˡ , +-identityʳ
distribˡ-⊖-+-pos : ∀ m n o → n ⊖ o + + m ≡ n ℕ.+ m ⊖ o
distribˡ-⊖-+-pos _ zero zero = refl
distribˡ-⊖-+-pos _ zero (suc _) = refl
distribˡ-⊖-+-pos _ (suc _) zero = refl
distribˡ-⊖-+-pos m (suc n) (suc o) = begin
suc n ⊖ suc o + + m ≡⟨ cong (_+ + m) ([1+m]⊖[1+n]≡m⊖n n o) ⟩
n ⊖ o + + m ≡⟨ distribˡ-⊖-+-pos m n o ⟩
n ℕ.+ m ⊖ o ≡˘⟨ [1+m]⊖[1+n]≡m⊖n (n ℕ.+ m) o ⟩
suc (n ℕ.+ m) ⊖ suc o ∎ where open ≡-Reasoning
distribˡ-⊖-+-neg : ∀ m n o → n ⊖ o + -[1+ m ] ≡ n ⊖ (suc o ℕ.+ m)
distribˡ-⊖-+-neg _ zero zero = refl
distribˡ-⊖-+-neg _ zero (suc _) = refl
distribˡ-⊖-+-neg _ (suc _) zero = refl
distribˡ-⊖-+-neg m (suc n) (suc o) = begin
suc n ⊖ suc o + -[1+ m ] ≡⟨ cong (_+ -[1+ m ]) ([1+m]⊖[1+n]≡m⊖n n o) ⟩
n ⊖ o + -[1+ m ] ≡⟨ distribˡ-⊖-+-neg m n o ⟩
n ⊖ (suc o ℕ.+ m) ≡˘⟨ [1+m]⊖[1+n]≡m⊖n n (suc o ℕ.+ m) ⟩
suc n ⊖ (suc (suc o) ℕ.+ m) ∎ where open ≡-Reasoning
distribʳ-⊖-+-pos : ∀ m n o → + m + (n ⊖ o) ≡ m ℕ.+ n ⊖ o
distribʳ-⊖-+-pos m n o = begin
+ m + (n ⊖ o) ≡⟨ +-comm (+ m) (n ⊖ o) ⟩
(n ⊖ o) + + m ≡⟨ distribˡ-⊖-+-pos m n o ⟩
n ℕ.+ m ⊖ o ≡⟨ cong (_⊖ o) (ℕ.+-comm n m) ⟩
m ℕ.+ n ⊖ o ∎ where open ≡-Reasoning
distribʳ-⊖-+-neg : ∀ m n o → -[1+ m ] + (n ⊖ o) ≡ n ⊖ (suc m ℕ.+ o)
distribʳ-⊖-+-neg m n o = begin
-[1+ m ] + (n ⊖ o) ≡⟨ +-comm -[1+ m ] (n ⊖ o) ⟩
(n ⊖ o) + -[1+ m ] ≡⟨ distribˡ-⊖-+-neg m n o ⟩
n ⊖ suc (o ℕ.+ m) ≡⟨ cong (λ x → n ⊖ suc x) (ℕ.+-comm o m) ⟩
n ⊖ suc (m ℕ.+ o) ∎ where open ≡-Reasoning
+-assoc : Associative _+_
+-assoc +0 j k rewrite +-identityˡ j | +-identityˡ (j + k) = refl
+-assoc i +0 k rewrite +-identityʳ i | +-identityˡ k = refl
+-assoc i j +0 rewrite +-identityʳ (i + j) | +-identityʳ j = refl
+-assoc -[1+ m ] -[1+ n ] +[1+ o ] = begin
suc o ⊖ suc (suc (m ℕ.+ n)) ≡⟨ [1+m]⊖[1+n]≡m⊖n o (suc m ℕ.+ n) ⟩
o ⊖ (suc m ℕ.+ n) ≡˘⟨ distribʳ-⊖-+-neg m o n ⟩
-[1+ m ] + (o ⊖ n) ≡˘⟨ cong (λ z → -[1+ m ] + z) ([1+m]⊖[1+n]≡m⊖n o n) ⟩
-[1+ m ] + (suc o ⊖ suc n) ∎ where open ≡-Reasoning
+-assoc -[1+ m ] +[1+ n ] +[1+ o ] = begin
suc n ⊖ suc m + +[1+ o ] ≡⟨ cong (_+ +[1+ o ]) ([1+m]⊖[1+n]≡m⊖n n m) ⟩
(n ⊖ m) + +[1+ o ] ≡⟨ distribˡ-⊖-+-pos (suc o) n m ⟩
n ℕ.+ suc o ⊖ m ≡˘⟨ [1+m]⊖[1+n]≡m⊖n (n ℕ.+ suc o) m ⟩
suc (n ℕ.+ suc o) ⊖ suc m ∎ where open ≡-Reasoning
+-assoc +[1+ m ] -[1+ n ] -[1+ o ] = begin
(suc m ⊖ suc n) + -[1+ o ] ≡⟨ cong (_+ -[1+ o ]) ([1+m]⊖[1+n]≡m⊖n m n) ⟩
(m ⊖ n) + -[1+ o ] ≡⟨ distribˡ-⊖-+-neg o m n ⟩
m ⊖ suc (n ℕ.+ o) ≡˘⟨ [1+m]⊖[1+n]≡m⊖n m (suc n ℕ.+ o) ⟩
suc m ⊖ suc (suc (n ℕ.+ o)) ∎ where open ≡-Reasoning
+-assoc +[1+ m ] -[1+ n ] +[1+ o ]
rewrite [1+m]⊖[1+n]≡m⊖n m n
| [1+m]⊖[1+n]≡m⊖n o n
| distribˡ-⊖-+-pos (suc o) m n
| distribʳ-⊖-+-pos (suc m) o n
| sym (ℕ.+-assoc m 1 o)
| ℕ.+-comm m 1
= refl
+-assoc +[1+ m ] +[1+ n ] -[1+ o ]
rewrite [1+m]⊖[1+n]≡m⊖n n o
| [1+m]⊖[1+n]≡m⊖n (m ℕ.+ suc n) o
| distribʳ-⊖-+-pos (suc m) n o
| sym (ℕ.+-assoc m 1 n)
| ℕ.+-comm m 1
= refl
+-assoc -[1+ m ] -[1+ n ] -[1+ o ]
rewrite sym (ℕ.+-assoc m 1 (n ℕ.+ o))
| ℕ.+-comm m 1
| ℕ.+-assoc m n o
= refl
+-assoc -[1+ m ] +[1+ n ] -[1+ o ]
rewrite [1+m]⊖[1+n]≡m⊖n n m
| [1+m]⊖[1+n]≡m⊖n n o
| distribʳ-⊖-+-neg m n o
| distribˡ-⊖-+-neg o n m
= refl
+-assoc +[1+ m ] +[1+ n ] +[1+ o ]
rewrite ℕ.+-assoc (suc m) (suc n) (suc o)
= refl
+-inverseˡ : LeftInverse +0 -_ _+_
+-inverseˡ -[1+ n ] = n⊖n≡0 (suc n)
+-inverseˡ +0 = refl
+-inverseˡ +[1+ n ] = n⊖n≡0 (suc n)
+-inverseʳ : RightInverse +0 -_ _+_
+-inverseʳ = comm+invˡ⇒invʳ +-comm +-inverseˡ
+-inverse : Inverse +0 -_ _+_
+-inverse = +-inverseˡ , +-inverseʳ
+-isMagma : IsMagma _+_
+-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _+_
}
+-isSemigroup : IsSemigroup _+_
+-isSemigroup = record
{ isMagma = +-isMagma
; assoc = +-assoc
}
+-isCommutativeSemigroup : IsCommutativeSemigroup _+_
+-isCommutativeSemigroup = record
{ isSemigroup = +-isSemigroup
; comm = +-comm
}
+-0-isMonoid : IsMonoid _+_ +0
+-0-isMonoid = record
{ isSemigroup = +-isSemigroup
; identity = +-identity
}
+-0-isCommutativeMonoid : IsCommutativeMonoid _+_ +0
+-0-isCommutativeMonoid = record
{ isMonoid = +-0-isMonoid
; comm = +-comm
}
+-0-isGroup : IsGroup _+_ +0 (-_)
+-0-isGroup = record
{ isMonoid = +-0-isMonoid
; inverse = +-inverse
; ⁻¹-cong = cong (-_)
}
+-isAbelianGroup : IsAbelianGroup _+_ +0 (-_)
+-isAbelianGroup = record
{ isGroup = +-0-isGroup
; comm = +-comm
}
+-magma : Magma 0ℓ 0ℓ
+-magma = record
{ isMagma = +-isMagma
}
+-semigroup : Semigroup 0ℓ 0ℓ
+-semigroup = record
{ isSemigroup = +-isSemigroup
}
+-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ
+-commutativeSemigroup = record
{ isCommutativeSemigroup = +-isCommutativeSemigroup
}
+-0-monoid : Monoid 0ℓ 0ℓ
+-0-monoid = record
{ isMonoid = +-0-isMonoid
}
+-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
+-0-commutativeMonoid = record
{ isCommutativeMonoid = +-0-isCommutativeMonoid
}
+-0-abelianGroup : AbelianGroup 0ℓ 0ℓ
+-0-abelianGroup = record
{ isAbelianGroup = +-isAbelianGroup
}
pos-+-commute : ℕtoℤ.Homomorphic₂ +_ ℕ._+_ _+_
pos-+-commute zero n = refl
pos-+-commute (suc m) n = cong sucℤ (pos-+-commute m n)
neg-distrib-+ : ∀ i j → - (i + j) ≡ (- i) + (- j)
neg-distrib-+ +0 +0 = refl
neg-distrib-+ +0 +[1+ n ] = refl
neg-distrib-+ +[1+ m ] +0 = cong -[1+_] (ℕ.+-identityʳ m)
neg-distrib-+ +[1+ m ] +[1+ n ] = cong -[1+_] (ℕ.+-suc m n)
neg-distrib-+ -[1+ m ] -[1+ n ] = cong +[1+_] (sym (ℕ.+-suc m n))
neg-distrib-+ (+ m) -[1+ n ] = -[n⊖m]≡-m+n m (suc n)
neg-distrib-+ -[1+ m ] (+ n) =
trans (-[n⊖m]≡-m+n n (suc m)) (+-comm (- + n) (+ suc m))
◃-distrib-+ : ∀ s m n → s ◃ (m ℕ.+ n) ≡ (s ◃ m) + (s ◃ n)
◃-distrib-+ Sign.- m n = begin
Sign.- ◃ (m ℕ.+ n) ≡⟨ -◃n≡-n (m ℕ.+ n) ⟩
- (+ (m ℕ.+ n)) ≡⟨⟩
- ((+ m) + (+ n)) ≡⟨ neg-distrib-+ (+ m) (+ n) ⟩
(- (+ m)) + (- (+ n)) ≡⟨ sym (cong₂ _+_ (-◃n≡-n m) (-◃n≡-n n)) ⟩
(Sign.- ◃ m) + (Sign.- ◃ n) ∎ where open ≡-Reasoning
◃-distrib-+ Sign.+ m n = begin
Sign.+ ◃ (m ℕ.+ n) ≡⟨ +◃n≡+n (m ℕ.+ n) ⟩
+ (m ℕ.+ n) ≡⟨⟩
(+ m) + (+ n) ≡⟨ sym (cong₂ _+_ (+◃n≡+n m) (+◃n≡+n n)) ⟩
(Sign.+ ◃ m) + (Sign.+ ◃ n) ∎ where open ≡-Reasoning
+-monoʳ-≤ : ∀ n → (_+_ n) Preserves _≤_ ⟶ _≤_
+-monoʳ-≤ (+ n) {_} (-≤- o≤m) = ⊖-monoʳ-≥-≤ n (s≤s o≤m)
+-monoʳ-≤ (+ n) { -[1+ m ]} -≤+ = ≤-trans (m⊖n≤m n (suc m)) (+≤+ (ℕ.m≤m+n n _))
+-monoʳ-≤ (+ n) {_} (+≤+ m≤o) = +≤+ (ℕ.+-monoʳ-≤ n m≤o)
+-monoʳ-≤ -[1+ n ] {_} {_} (-≤- n≤m) = -≤- (ℕ.+-monoʳ-≤ (suc n) n≤m)
+-monoʳ-≤ -[1+ n ] {_} {+ m} -≤+ = ≤-trans (-≤- (ℕ.m≤m+n (suc n) _)) (-1+m≤n⊖m (suc n) m)
+-monoʳ-≤ -[1+ n ] {_} {_} (+≤+ m≤n) = ⊖-monoˡ-≤ (suc n) m≤n
+-monoˡ-≤ : ∀ n → (_+ n) Preserves _≤_ ⟶ _≤_
+-monoˡ-≤ n {i} {j} rewrite +-comm i n | +-comm j n = +-monoʳ-≤ n
+-mono-≤ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_
+-mono-≤ {m} {n} {i} {j} m≤n i≤j = begin
m + i ≤⟨ +-monoˡ-≤ i m≤n ⟩
n + i ≤⟨ +-monoʳ-≤ n i≤j ⟩
n + j ∎
where open ≤-Reasoning
≤-steps : ∀ k .{{_ : NonNegative k}} → i ≤ j → i ≤ k + j
≤-steps (+ n) i≤j = subst (_≤ _) (+-identityˡ _) (+-mono-≤ (+≤+ z≤n) i≤j)
i≤j+i : ∀ i j .{{_ : NonNegative j}} → i ≤ j + i
i≤j+i i j = ≤-steps j ≤-refl
i≤i+j : ∀ i j .{{_ : NonNegative j}} → i ≤ i + j
i≤i+j i j rewrite +-comm i j = i≤j+i i j
+-monoʳ-< : ∀ i → (_+_ i) Preserves _<_ ⟶ _<_
+-monoʳ-< (+ n) {_} {_} (-<- o<m) = ⊖-monoʳ->-< n (s<s o<m)
+-monoʳ-< (+ n) {_} {_} -<+ = <-≤-trans (m⊖1+n<m n _) (+≤+ (ℕ.m≤m+n n _))
+-monoʳ-< (+ n) {_} {_} (+<+ m<o) = +<+ (ℕ.+-monoʳ-< n m<o)
+-monoʳ-< -[1+ n ] {_} {_} (-<- o<m) = -<- (ℕ.+-monoʳ-< (suc n) o<m)
+-monoʳ-< -[1+ n ] {_} {+ o} -<+ = <-≤-trans (-<- (ℕ.m≤m+n (suc n) _)) (-[1+m]≤n⊖m+1 n o)
+-monoʳ-< -[1+ n ] {_} {_} (+<+ m<o) = ⊖-monoˡ-< (suc n) m<o
+-monoˡ-< : ∀ i → (_+ i) Preserves _<_ ⟶ _<_
+-monoˡ-< i {j} {k} rewrite +-comm j i | +-comm k i = +-monoʳ-< i
+-mono-< : _+_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_
+-mono-< {i} {j} {k} {l} i<j k<l = begin-strict
i + k <⟨ +-monoˡ-< k i<j ⟩
j + k <⟨ +-monoʳ-< j k<l ⟩
j + l ∎
where open ≤-Reasoning
+-mono-≤-< : _+_ Preserves₂ _≤_ ⟶ _<_ ⟶ _<_
+-mono-≤-< {i} {j} {k} i≤j j<k = ≤-<-trans (+-monoˡ-≤ k i≤j) (+-monoʳ-< j j<k)
+-mono-<-≤ : _+_ Preserves₂ _<_ ⟶ _≤_ ⟶ _<_
+-mono-<-≤ {i} {j} {k} i<j j≤k = <-≤-trans (+-monoˡ-< k i<j) (+-monoʳ-≤ j j≤k)
neg-minus-pos : ∀ m n → -[1+ m ] - (+ n) ≡ -[1+ (n ℕ.+ m) ]
neg-minus-pos m zero = refl
neg-minus-pos zero (suc n) = cong (-[1+_] ∘ suc) (sym (ℕ.+-identityʳ n))
neg-minus-pos (suc m) (suc n) = cong (-[1+_] ∘ suc) (ℕ.+-comm (suc m) n)
+-minus-telescope : ∀ i j k → (i - j) + (j - k) ≡ i - k
+-minus-telescope i j k = begin
(i - j) + (j - k) ≡⟨ +-assoc i (- j) (j - k) ⟩
i + (- j + (j - k)) ≡˘⟨ cong (λ v → i + v) (+-assoc (- j) j _) ⟩
i + ((- j + j) - k) ≡˘⟨ +-assoc i (- j + j) (- k) ⟩
i + (- j + j) - k ≡⟨ cong (λ a → i + a - k) (+-inverseˡ j) ⟩
i + 0ℤ - k ≡⟨ cong (_- k) (+-identityʳ i) ⟩
i - k ∎ where open ≡-Reasoning
[+m]-[+n]≡m⊖n : ∀ m n → (+ m) - (+ n) ≡ m ⊖ n
[+m]-[+n]≡m⊖n zero zero = refl
[+m]-[+n]≡m⊖n zero (suc n) = refl
[+m]-[+n]≡m⊖n (suc m) zero = cong +[1+_] (ℕ.+-identityʳ m)
[+m]-[+n]≡m⊖n (suc m) (suc n) = refl
∣i-j∣≡∣j-i∣ : ∀ i j → ∣ i - j ∣ ≡ ∣ j - i ∣
∣i-j∣≡∣j-i∣ -[1+ m ] -[1+ n ] = ∣m⊖n∣≡∣n⊖m∣ (suc n) (suc m)
∣i-j∣≡∣j-i∣ -[1+ m ] (+ n) = begin
∣ -[1+ m ] - (+ n) ∣ ≡⟨ cong ∣_∣ (neg-minus-pos m n) ⟩
suc (n ℕ.+ m) ≡˘⟨ ℕ.+-suc n m ⟩
n ℕ.+ suc m ∎ where open ≡-Reasoning
∣i-j∣≡∣j-i∣ (+ m) -[1+ n ] = begin
m ℕ.+ suc n ≡⟨ ℕ.+-suc m n ⟩
suc (m ℕ.+ n) ≡˘⟨ cong ∣_∣ (neg-minus-pos n m) ⟩
∣ -[1+ n ] + - + m ∣ ∎ where open ≡-Reasoning
∣i-j∣≡∣j-i∣ (+ m) (+ n) = begin
∣ + m - + n ∣ ≡⟨ cong ∣_∣ ([+m]-[+n]≡m⊖n m n) ⟩
∣ m ⊖ n ∣ ≡⟨ ∣m⊖n∣≡∣n⊖m∣ m n ⟩
∣ n ⊖ m ∣ ≡˘⟨ cong ∣_∣ ([+m]-[+n]≡m⊖n n m) ⟩
∣ + n - + m ∣ ∎ where open ≡-Reasoning
∣-∣-≤ : i ≤ j → + ∣ i - j ∣ ≡ j - i
∣-∣-≤ (-≤- {m} {n} n≤m) = begin
+ ∣ -[1+ m ] + +[1+ n ] ∣ ≡⟨ cong (λ j → + ∣ j ∣) ([1+m]⊖[1+n]≡m⊖n n m) ⟩
+ ∣ n ⊖ m ∣ ≡⟨ cong +_ (∣⊖∣-≤ n≤m) ⟩
+ ( m ∸ n ) ≡⟨ sym (≤-⊖ n≤m) ⟩
m ⊖ n ≡⟨ sym ([1+m]⊖[1+n]≡m⊖n m n) ⟩
suc m ⊖ suc n ∎ where open ≡-Reasoning
∣-∣-≤ (-≤+ {m} {zero}) = refl
∣-∣-≤ (-≤+ {m} {suc n}) = begin
+ ∣ -[1+ m ] - + suc n ∣ ≡⟨⟩
+ suc (suc m ℕ.+ n) ≡⟨ cong (λ n → + suc n) (ℕ.+-comm (suc m) n) ⟩
+ (suc n ℕ.+ suc m) ≡⟨⟩
+ suc n - -[1+ m ] ∎ where open ≡-Reasoning
∣-∣-≤ (+≤+ {m} {n} m≤n) = begin
+ ∣ + m - + n ∣ ≡⟨ cong (λ j → + ∣ j ∣) (m-n≡m⊖n m n) ⟩
+ ∣ m ⊖ n ∣ ≡⟨ cong +_ ( ∣⊖∣-≤ m≤n ) ⟩
+ (n ∸ m) ≡⟨ sym (≤-⊖ m≤n) ⟩
n ⊖ m ≡⟨ sym (m-n≡m⊖n n m) ⟩
+ n - + m ∎ where open ≡-Reasoning
i≡j⇒i-j≡0 : i ≡ j → i - j ≡ 0ℤ
i≡j⇒i-j≡0 {i} refl = +-inverseʳ i
i-j≡0⇒i≡j : ∀ i j → i - j ≡ 0ℤ → i ≡ j
i-j≡0⇒i≡j i j i-j≡0 = begin
i ≡˘⟨ +-identityʳ i ⟩
i + 0ℤ ≡˘⟨ cong (_+_ i) (+-inverseˡ j) ⟩
i + (- j + j) ≡˘⟨ +-assoc i (- j) j ⟩
(i - j) + j ≡⟨ cong (_+ j) i-j≡0 ⟩
0ℤ + j ≡⟨ +-identityˡ j ⟩
j ∎ where open ≡-Reasoning
≤-steps-neg : ∀ k .{{_ : NonNegative k}} → i ≤ j → i - k ≤ j
≤-steps-neg {i} +0 i≤j rewrite +-identityʳ i = i≤j
≤-steps-neg {+ m} +[1+ n ] i≤j = ≤-trans (m⊖n≤m m (suc n)) i≤j
≤-steps-neg { -[1+ m ]} +[1+ n ] i≤j = ≤-trans (-≤- (ℕ.≤-trans (ℕ.m≤m+n m n) (ℕ.n≤1+n _))) i≤j
i-j≤i : ∀ i j .{{_ : NonNegative j}} → i - j ≤ i
i-j≤i i j = ≤-steps-neg j ≤-refl
i≤j⇒i-j≤0 : i ≤ j → i - j ≤ 0ℤ
i≤j⇒i-j≤0 {_} {j} -≤+ = ≤-steps-neg j -≤+
i≤j⇒i-j≤0 { -[1+ m ]} { -[1+ n ]} (-≤- n≤m) = begin
suc n ⊖ suc m ≡⟨ [1+m]⊖[1+n]≡m⊖n n m ⟩
n ⊖ m ≤⟨ ⊖-monoʳ-≥-≤ n n≤m ⟩
n ⊖ n ≡⟨ n⊖n≡0 n ⟩
0ℤ ∎ where open ≤-Reasoning
i≤j⇒i-j≤0 {_} {+0} (+≤+ z≤n) = +≤+ z≤n
i≤j⇒i-j≤0 {_} {+[1+ n ]} (+≤+ z≤n) = -≤+
i≤j⇒i-j≤0 {+[1+ m ]} {+[1+ n ]} (+≤+ (s≤s m≤n)) = begin
suc m ⊖ suc n ≡⟨ [1+m]⊖[1+n]≡m⊖n m n ⟩
m ⊖ n ≤⟨ ⊖-monoʳ-≥-≤ m m≤n ⟩
m ⊖ m ≡⟨ n⊖n≡0 m ⟩
0ℤ ∎ where open ≤-Reasoning
i-j≤0⇒i≤j : i - j ≤ 0ℤ → i ≤ j
i-j≤0⇒i≤j {i} {j} i-j≤0 = begin
i ≡˘⟨ +-identityʳ i ⟩
i + 0ℤ ≡˘⟨ cong (_+_ i) (+-inverseˡ j) ⟩
i + (- j + j) ≡˘⟨ +-assoc i (- j) j ⟩
(i - j) + j ≤⟨ +-monoˡ-≤ j i-j≤0 ⟩
0ℤ + j ≡⟨ +-identityˡ j ⟩
j ∎
where open ≤-Reasoning
i≤j⇒0≤j-i : i ≤ j → 0ℤ ≤ j - i
i≤j⇒0≤j-i {i} {j} i≤j = begin
0ℤ ≡˘⟨ +-inverseʳ i ⟩
i - i ≤⟨ +-monoˡ-≤ (- i) i≤j ⟩
j - i ∎
where open ≤-Reasoning
0≤i-j⇒j≤i : 0ℤ ≤ i - j → j ≤ i
0≤i-j⇒j≤i {i} {j} 0≤i-j = begin
j ≡˘⟨ +-identityˡ j ⟩
0ℤ + j ≤⟨ +-monoˡ-≤ j 0≤i-j ⟩
i - j + j ≡⟨ +-assoc i (- j) j ⟩
i + (- j + j) ≡⟨ cong (_+_ i) (+-inverseˡ j) ⟩
i + 0ℤ ≡⟨ +-identityʳ i ⟩
i ∎
where open ≤-Reasoning
≤-step : i ≤ j → i ≤ sucℤ j
≤-step = ≤-steps (+ 1)
i≤suc[i] : ∀ i → i ≤ sucℤ i
i≤suc[i] i = ≤-steps (+ 1) ≤-refl
suc-+ : ∀ m n → +[1+ m ] + n ≡ sucℤ (+ m + n)
suc-+ m (+ n) = refl
suc-+ m (-[1+ n ]) = sym (distribʳ-⊖-+-pos 1 m (suc n))
i≢suc[i] : i ≢ sucℤ i
i≢suc[i] {+ _} ()
i≢suc[i] { -[1+ 0 ]} ()
i≢suc[i] { -[1+ suc n ]} ()
1-[1+n]≡-n : ∀ n → sucℤ -[1+ n ] ≡ - (+ n)
1-[1+n]≡-n zero = refl
1-[1+n]≡-n (suc n) = refl
suc-mono : sucℤ Preserves _≤_ ⟶ _≤_
suc-mono (-≤+ {m} {n}) = begin
1 ⊖ suc m ≡⟨ [1+m]⊖[1+n]≡m⊖n 0 m ⟩
0 ⊖ m ≤⟨ 0⊖m≤+ m ⟩
sucℤ (+ n) ∎ where open ≤-Reasoning
suc-mono (-≤- n≤m) = ⊖-monoʳ-≥-≤ 1 (s≤s n≤m)
suc-mono (+≤+ m≤n) = +≤+ (s≤s m≤n)
suc[i]≤j⇒i<j : sucℤ i ≤ j → i < j
suc[i]≤j⇒i<j {+ i} {+ _} (+≤+ i≤j) = +<+ i≤j
suc[i]≤j⇒i<j { -[1+ 0 ]} {+ j} p = -<+
suc[i]≤j⇒i<j { -[1+ suc i ]} {+ j} -≤+ = -<+
suc[i]≤j⇒i<j { -[1+ suc i ]} { -[1+ j ]} (-≤- j≤i) = -<- (ℕ.s≤s j≤i)
i<j⇒suc[i]≤j : i < j → sucℤ i ≤ j
i<j⇒suc[i]≤j {+ _} {+ _} (+<+ i<j) = +≤+ i<j
i<j⇒suc[i]≤j { -[1+ 0 ]} {+ _} -<+ = +≤+ z≤n
i<j⇒suc[i]≤j { -[1+ suc i ]} { -[1+ _ ]} (-<- j<i) = -≤- (ℕ.≤-pred j<i)
i<j⇒suc[i]≤j { -[1+ suc i ]} {+ _} -<+ = -≤+
suc-pred : ∀ i → sucℤ (pred i) ≡ i
suc-pred i = begin
sucℤ (pred i) ≡˘⟨ +-assoc 1ℤ -1ℤ i ⟩
0ℤ + i ≡⟨ +-identityˡ i ⟩
i ∎ where open ≡-Reasoning
pred-suc : ∀ i → pred (sucℤ i) ≡ i
pred-suc i = begin
pred (sucℤ i) ≡˘⟨ +-assoc -1ℤ 1ℤ i ⟩
0ℤ + i ≡⟨ +-identityˡ i ⟩
i ∎ where open ≡-Reasoning
+-pred : ∀ i j → i + pred j ≡ pred (i + j)
+-pred i j = begin
i + (-1ℤ + j) ≡˘⟨ +-assoc i -1ℤ j ⟩
i + -1ℤ + j ≡⟨ cong (_+ j) (+-comm i -1ℤ) ⟩
-1ℤ + i + j ≡⟨ +-assoc -1ℤ i j ⟩
-1ℤ + (i + j) ∎ where open ≡-Reasoning
pred-+ : ∀ i j → pred i + j ≡ pred (i + j)
pred-+ i j = begin
pred i + j ≡⟨ +-comm (pred i) j ⟩
j + pred i ≡⟨ +-pred j i ⟩
pred (j + i) ≡⟨ cong pred (+-comm j i) ⟩
pred (i + j) ∎ where open ≡-Reasoning
neg-suc : ∀ m → -[1+ m ] ≡ pred (- + m)
neg-suc zero = refl
neg-suc (suc m) = refl
minus-suc : ∀ m n → m - +[1+ n ] ≡ pred (m - + n)
minus-suc m n = begin
m + - +[1+ n ] ≡⟨ cong (_+_ m) (neg-suc n) ⟩
m + pred (- (+ n)) ≡⟨ +-pred m (- + n) ⟩
pred (m - + n) ∎ where open ≡-Reasoning
i≤pred[j]⇒i<j : i ≤ pred j → i < j
i≤pred[j]⇒i<j {_} { + n} leq = ≤-<-trans leq (m⊖1+n<m n 1)
i≤pred[j]⇒i<j {_} { -[1+ n ]} leq = ≤-<-trans leq (-<- ℕ.≤-refl)
i<j⇒i≤pred[j] : i < j → i ≤ pred j
i<j⇒i≤pred[j] {_} { +0} -<+ = -≤- z≤n
i<j⇒i≤pred[j] {_} { +[1+ n ]} -<+ = -≤+
i<j⇒i≤pred[j] {_} { +[1+ n ]} (+<+ m<n) = +≤+ (ℕ.≤-pred m<n)
i<j⇒i≤pred[j] {_} { -[1+ n ]} (-<- n<m) = -≤- n<m
≤-step-neg : i ≤ j → pred i ≤ j
≤-step-neg -≤+ = -≤+
≤-step-neg (-≤- n≤m) = -≤- (ℕ.≤-step n≤m)
≤-step-neg (+≤+ z≤n) = -≤+
≤-step-neg (+≤+ (s≤s m≤n)) = +≤+ (ℕ.≤-step m≤n)
pred-mono : pred Preserves _≤_ ⟶ _≤_
pred-mono (-≤+ {n = 0}) = -≤- z≤n
pred-mono (-≤+ {n = suc n}) = -≤+
pred-mono (-≤- n≤m) = -≤- (s≤s n≤m)
pred-mono (+≤+ m≤n) = ⊖-monoˡ-≤ 1 m≤n
*-comm : Commutative _*_
*-comm -[1+ m ] -[1+ n ] rewrite ℕ.*-comm (suc m) (suc n) = refl
*-comm -[1+ m ] (+ n) rewrite ℕ.*-comm (suc m) n = refl
*-comm (+ m) -[1+ n ] rewrite ℕ.*-comm m (suc n) = refl
*-comm (+ m) (+ n) rewrite ℕ.*-comm m n = refl
*-identityˡ : LeftIdentity 1ℤ _*_
*-identityˡ -[1+ n ] rewrite ℕ.+-identityʳ n = refl
*-identityˡ +0 = refl
*-identityˡ +[1+ n ] rewrite ℕ.+-identityʳ n = refl
*-identityʳ : RightIdentity 1ℤ _*_
*-identityʳ = comm+idˡ⇒idʳ *-comm *-identityˡ
*-identity : Identity 1ℤ _*_
*-identity = *-identityˡ , *-identityʳ
*-zeroˡ : LeftZero 0ℤ _*_
*-zeroˡ _ = refl
*-zeroʳ : RightZero 0ℤ _*_
*-zeroʳ = comm+zeˡ⇒zeʳ *-comm *-zeroˡ
*-zero : Zero 0ℤ _*_
*-zero = *-zeroˡ , *-zeroʳ
private
lemma : ∀ m n o → o ℕ.+ (n ℕ.+ m ℕ.* suc n) ℕ.* suc o
≡ o ℕ.+ n ℕ.* suc o ℕ.+ m ℕ.* suc (o ℕ.+ n ℕ.* suc o)
lemma =
solve 3 (λ m n o → o :+ (n :+ m :* (con 1 :+ n)) :* (con 1 :+ o)
:= o :+ n :* (con 1 :+ o) :+
m :* (con 1 :+ (o :+ n :* (con 1 :+ o))))
refl
*-assoc : Associative _*_
*-assoc +0 _ _ = refl
*-assoc i +0 _ rewrite ℕ.*-zeroʳ ∣ i ∣ = refl
*-assoc i j +0 rewrite
ℕ.*-zeroʳ ∣ j ∣
| ℕ.*-zeroʳ ∣ i ∣
| ℕ.*-zeroʳ ∣ sign i 𝕊* sign j ◃ ∣ i ∣ ℕ.* ∣ j ∣ ∣
= refl
*-assoc -[1+ m ] -[1+ n ] +[1+ o ] = cong (+_ ∘ suc) (lemma m n o)
*-assoc -[1+ m ] +[1+ n ] -[1+ o ] = cong (+_ ∘ suc) (lemma m n o)
*-assoc +[1+ m ] +[1+ n ] +[1+ o ] = cong (+_ ∘ suc) (lemma m n o)
*-assoc +[1+ m ] -[1+ n ] -[1+ o ] = cong (+_ ∘ suc) (lemma m n o)
*-assoc -[1+ m ] -[1+ n ] -[1+ o ] = cong -[1+_] (lemma m n o)
*-assoc -[1+ m ] +[1+ n ] +[1+ o ] = cong -[1+_] (lemma m n o)
*-assoc +[1+ m ] -[1+ n ] +[1+ o ] = cong -[1+_] (lemma m n o)
*-assoc +[1+ m ] +[1+ n ] -[1+ o ] = cong -[1+_] (lemma m n o)
private
distrib-lemma : ∀ m n o → (o ⊖ n) * -[1+ m ] ≡ m ℕ.+ n ℕ.* suc m ⊖ (m ℕ.+ o ℕ.* suc m)
distrib-lemma m n o
rewrite +-cancelˡ-⊖ m (n ℕ.* suc m) (o ℕ.* suc m)
| ⊖-swap (n ℕ.* suc m) (o ℕ.* suc m)
with n ℕ.≤? o
... | yes n≤o
rewrite ⊖-≥ n≤o
| ⊖-≥ (ℕ.*-mono-≤ n≤o (ℕ.≤-refl {x = suc m}))
| -◃n≡-n ((o ∸ n) ℕ.* suc m)
| ℕ.*-distribʳ-∸ (suc m) o n
= refl
... | no n≰o
rewrite sign-⊖-≰ n≰o
| ∣⊖∣-≰ n≰o
| +◃n≡+n ((n ∸ o) ℕ.* suc m)
| ⊖-≰ (n≰o ∘ ℕ.*-cancelʳ-≤ n o (suc m))
| neg-involutive (+ (n ℕ.* suc m ∸ o ℕ.* suc m))
| ℕ.*-distribʳ-∸ (suc m) n o
= refl
*-distribʳ-+ : _*_ DistributesOverʳ _+_
*-distribʳ-+ +0 y z
rewrite ℕ.*-zeroʳ ∣ y ∣
| ℕ.*-zeroʳ ∣ z ∣
| ℕ.*-zeroʳ ∣ y + z ∣
= refl
*-distribʳ-+ x +0 z
rewrite +-identityˡ z
| +-identityˡ (sign z 𝕊* sign x ◃ ∣ z ∣ ℕ.* ∣ x ∣)
= refl
*-distribʳ-+ x y +0
rewrite +-identityʳ y
| +-identityʳ (sign y 𝕊* sign x ◃ ∣ y ∣ ℕ.* ∣ x ∣)
= refl
*-distribʳ-+ -[1+ m ] -[1+ n ] -[1+ o ] = cong (+_) $
solve 3 (λ m n o → (con 2 :+ n :+ o) :* (con 1 :+ m)
:= (con 1 :+ n) :* (con 1 :+ m) :+
(con 1 :+ o) :* (con 1 :+ m))
refl m n o
*-distribʳ-+ +[1+ m ] +[1+ n ] +[1+ o ] = cong (+_) $
solve 3 (λ m n o → (con 1 :+ n :+ (con 1 :+ o)) :* (con 1 :+ m)
:= (con 1 :+ n) :* (con 1 :+ m) :+
(con 1 :+ o) :* (con 1 :+ m))
refl m n o
*-distribʳ-+ -[1+ m ] +[1+ n ] +[1+ o ] = cong -[1+_] $
solve 3 (λ m n o → m :+ (n :+ (con 1 :+ o)) :* (con 1 :+ m)
:= (con 1 :+ n) :* (con 1 :+ m) :+
(m :+ o :* (con 1 :+ m)))
refl m n o
*-distribʳ-+ +[1+ m ] -[1+ n ] -[1+ o ] = cong -[1+_] $
solve 3 (λ m n o → m :+ (con 1 :+ m :+ (n :+ o) :* (con 1 :+ m))
:= (con 1 :+ n) :* (con 1 :+ m) :+
(m :+ o :* (con 1 :+ m)))
refl m n o
*-distribʳ-+ -[1+ m ] -[1+ n ] +[1+ o ] = begin
(suc o ⊖ suc n) * -[1+ m ] ≡⟨ cong (_* -[1+ m ]) ([1+m]⊖[1+n]≡m⊖n o n) ⟩
(o ⊖ n) * -[1+ m ] ≡⟨ distrib-lemma m n o ⟩
m ℕ.+ n ℕ.* suc m ⊖ (m ℕ.+ o ℕ.* suc m) ≡˘⟨ [1+m]⊖[1+n]≡m⊖n (m ℕ.+ n ℕ.* suc m) (m ℕ.+ o ℕ.* suc m) ⟩
-[1+ n ] * -[1+ m ] + +[1+ o ] * -[1+ m ] ∎ where open ≡-Reasoning
*-distribʳ-+ -[1+ m ] +[1+ n ] -[1+ o ] = begin
(+[1+ n ] + -[1+ o ]) * -[1+ m ] ≡⟨ cong (_* -[1+ m ]) ([1+m]⊖[1+n]≡m⊖n n o) ⟩
(n ⊖ o) * -[1+ m ] ≡⟨ distrib-lemma m o n ⟩
m ℕ.+ o ℕ.* suc m ⊖ (m ℕ.+ n ℕ.* suc m) ≡˘⟨ [1+m]⊖[1+n]≡m⊖n (m ℕ.+ o ℕ.* suc m) (m ℕ.+ n ℕ.* suc m) ⟩
+[1+ n ] * -[1+ m ] + -[1+ o ] * -[1+ m ] ∎ where open ≡-Reasoning
*-distribʳ-+ +[1+ m ] -[1+ n ] +[1+ o ] with n ℕ.≤? o
... | yes n≤o
rewrite [1+m]⊖[1+n]≡m⊖n o n
| [1+m]⊖[1+n]≡m⊖n (m ℕ.+ o ℕ.* suc m) (m ℕ.+ n ℕ.* suc m)
| +-cancelˡ-⊖ m (o ℕ.* suc m) (n ℕ.* suc m)
| ⊖-≥ n≤o
| +-comm (- (+ (m ℕ.+ n ℕ.* suc m))) (+ (m ℕ.+ o ℕ.* suc m))
| ⊖-≥ (ℕ.*-mono-≤ n≤o (ℕ.≤-refl {x = suc m}))
| ℕ.*-distribʳ-∸ (suc m) o n
| +◃n≡+n (o ℕ.* suc m ∸ n ℕ.* suc m)
= refl
... | no n≰o
rewrite [1+m]⊖[1+n]≡m⊖n o n
| [1+m]⊖[1+n]≡m⊖n (m ℕ.+ o ℕ.* suc m) (m ℕ.+ n ℕ.* suc m)
| +-cancelˡ-⊖ m (o ℕ.* suc m) (n ℕ.* suc m)
| sign-⊖-≰ n≰o
| ∣⊖∣-≰ n≰o
| -◃n≡-n ((n ∸ o) ℕ.* suc m)
| ⊖-≰ (n≰o ∘ ℕ.*-cancelʳ-≤ n o (suc m))
| ℕ.*-distribʳ-∸ (suc m) n o
= refl
*-distribʳ-+ +[1+ o ] +[1+ m ] -[1+ n ] with n ℕ.≤? m
... | yes n≤m
rewrite [1+m]⊖[1+n]≡m⊖n m n
| [1+m]⊖[1+n]≡m⊖n (o ℕ.+ m ℕ.* suc o) (o ℕ.+ n ℕ.* suc o)
| +-cancelˡ-⊖ o (m ℕ.* suc o) (n ℕ.* suc o)
| ⊖-≥ n≤m
| ⊖-≥ (ℕ.*-mono-≤ n≤m (ℕ.≤-refl {x = suc o}))
| +◃n≡+n ((m ∸ n) ℕ.* suc o)
| ℕ.*-distribʳ-∸ (suc o) m n
= refl
... | no n≰m
rewrite [1+m]⊖[1+n]≡m⊖n m n
| [1+m]⊖[1+n]≡m⊖n (o ℕ.+ m ℕ.* suc o) (o ℕ.+ n ℕ.* suc o)
| +-cancelˡ-⊖ o (m ℕ.* suc o) (n ℕ.* suc o)
| sign-⊖-≰ n≰m
| ∣⊖∣-≰ n≰m
| ⊖-≰ (n≰m ∘ ℕ.*-cancelʳ-≤ n m (suc o))
| -◃n≡-n ((n ∸ m) ℕ.* suc o)
| ℕ.*-distribʳ-∸ (suc o) n m
= refl
*-distribˡ-+ : _*_ DistributesOverˡ _+_
*-distribˡ-+ = comm+distrʳ⇒distrˡ *-comm *-distribʳ-+
*-distrib-+ : _*_ DistributesOver _+_
*-distrib-+ = *-distribˡ-+ , *-distribʳ-+
*-isMagma : IsMagma _*_
*-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _*_
}
*-isSemigroup : IsSemigroup _*_
*-isSemigroup = record
{ isMagma = *-isMagma
; assoc = *-assoc
}
*-isCommutativeSemigroup : IsCommutativeSemigroup _*_
*-isCommutativeSemigroup = record
{ isSemigroup = *-isSemigroup
; comm = *-comm
}
*-1-isMonoid : IsMonoid _*_ 1ℤ
*-1-isMonoid = record
{ isSemigroup = *-isSemigroup
; identity = *-identity
}
*-1-isCommutativeMonoid : IsCommutativeMonoid _*_ 1ℤ
*-1-isCommutativeMonoid = record
{ isMonoid = *-1-isMonoid
; comm = *-comm
}
+-*-isSemiring : IsSemiring _+_ _*_ 0ℤ 1ℤ
+-*-isSemiring = record
{ isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = +-0-isCommutativeMonoid
; *-cong = cong₂ _*_
; *-assoc = *-assoc
; *-identity = *-identity
; distrib = *-distrib-+
}
; zero = *-zero
}
+-*-isCommutativeSemiring : IsCommutativeSemiring _+_ _*_ 0ℤ 1ℤ
+-*-isCommutativeSemiring = record
{ isSemiring = +-*-isSemiring
; *-comm = *-comm
}
+-*-isRing : IsRing _+_ _*_ -_ 0ℤ 1ℤ
+-*-isRing = record
{ +-isAbelianGroup = +-isAbelianGroup
; *-cong = cong₂ _*_
; *-assoc = *-assoc
; *-identity = *-identity
; distrib = *-distrib-+
; zero = *-zero
}
+-*-isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0ℤ 1ℤ
+-*-isCommutativeRing = record
{ isRing = +-*-isRing
; *-comm = *-comm
}
*-rawMagma : RawMagma 0ℓ 0ℓ
*-rawMagma = record { _≈_ = _≡_ ; _∙_ = _*_ }
*-1-rawMonoid : RawMonoid 0ℓ 0ℓ
*-1-rawMonoid = record { _≈_ = _≡_ ; _∙_ = _*_ ; ε = 1ℤ }
*-magma : Magma 0ℓ 0ℓ
*-magma = record
{ isMagma = *-isMagma
}
*-semigroup : Semigroup 0ℓ 0ℓ
*-semigroup = record
{ isSemigroup = *-isSemigroup
}
*-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ
*-commutativeSemigroup = record
{ isCommutativeSemigroup = *-isCommutativeSemigroup
}
*-1-monoid : Monoid 0ℓ 0ℓ
*-1-monoid = record
{ isMonoid = *-1-isMonoid
}
*-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
*-1-commutativeMonoid = record
{ isCommutativeMonoid = *-1-isCommutativeMonoid
}
+-*-semiring : Semiring 0ℓ 0ℓ
+-*-semiring = record
{ isSemiring = +-*-isSemiring
}
+-*-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ
+-*-commutativeSemiring = record
{ isCommutativeSemiring = +-*-isCommutativeSemiring
}
+-*-ring : Ring 0ℓ 0ℓ
+-*-ring = record
{ isRing = +-*-isRing
}
+-*-commutativeRing : CommutativeRing 0ℓ 0ℓ
+-*-commutativeRing = record
{ isCommutativeRing = +-*-isCommutativeRing
}
abs-*-commute : ℤtoℕ.Homomorphic₂ ∣_∣ _*_ ℕ._*_
abs-*-commute i j = abs-◃ _ _
*-cancelʳ-≡ : ∀ i j k .{{_ : NonZero k}} → i * k ≡ j * k → i ≡ j
*-cancelʳ-≡ i j k eq with sign-cong′ eq
... | inj₁ s[ik]≡s[jk] = ◃-cong
(𝕊ₚ.*-cancelʳ-≡ {sign k} (sign i) (sign j) s[ik]≡s[jk])
(ℕ.*-cancelʳ-≡ ∣ i ∣ ∣ j ∣ (abs-cong eq))
... | inj₂ (∣ik∣≡0 , ∣jk∣≡0) = trans
(∣i∣≡0⇒i≡0 (ℕ.m*n≡0⇒m≡0 _ _ ∣ik∣≡0))
(sym (∣i∣≡0⇒i≡0 (ℕ.m*n≡0⇒m≡0 _ _ ∣jk∣≡0)))
*-cancelˡ-≡ : ∀ i j k .{{_ : NonZero i}} → i * j ≡ i * k → j ≡ k
*-cancelˡ-≡ i j k rewrite *-comm i j | *-comm i k = *-cancelʳ-≡ j k i
suc-* : ∀ i j → sucℤ i * j ≡ j + i * j
suc-* i j = begin
sucℤ i * j ≡⟨ *-distribʳ-+ j (+ 1) i ⟩
+ 1 * j + i * j ≡⟨ cong (_+ i * j) (*-identityˡ j) ⟩
j + i * j ∎
where open ≡-Reasoning
*-suc : ∀ i j → i * sucℤ j ≡ i + i * j
*-suc i j = begin
i * sucℤ j ≡⟨ *-comm i _ ⟩
sucℤ j * i ≡⟨ suc-* j i ⟩
i + j * i ≡⟨ cong (λ v → i + v) (*-comm j i) ⟩
i + i * j ∎
where open ≡-Reasoning
-1*i≡-i : ∀ i → -1ℤ * i ≡ - i
-1*i≡-i -[1+ n ] = cong +[1+_] (ℕ.+-identityʳ n)
-1*i≡-i +0 = refl
-1*i≡-i +[1+ n ] = cong -[1+_] (ℕ.+-identityʳ n)
i*j≡0⇒i≡0∨j≡0 : ∀ i {j} → i * j ≡ 0ℤ → i ≡ 0ℤ ⊎ j ≡ 0ℤ
i*j≡0⇒i≡0∨j≡0 i p with ℕ.m*n≡0⇒m≡0∨n≡0 ∣ i ∣ (abs-cong {t = Sign.+} p)
... | inj₁ ∣i∣≡0 = inj₁ (∣i∣≡0⇒i≡0 ∣i∣≡0)
... | inj₂ ∣j∣≡0 = inj₂ (∣i∣≡0⇒i≡0 ∣j∣≡0)
^-identityʳ : ∀ i → i ^ 1 ≡ i
^-identityʳ = *-identityʳ
^-zeroˡ : ∀ n → 1ℤ ^ n ≡ 1ℤ
^-zeroˡ zero = refl
^-zeroˡ (suc n) = begin
1ℤ ^ suc n ≡⟨⟩
1ℤ * (1ℤ ^ n) ≡⟨ *-identityˡ (1ℤ ^ n) ⟩
1ℤ ^ n ≡⟨ ^-zeroˡ n ⟩
1ℤ ∎
where open ≡-Reasoning
^-distribˡ-+-* : ∀ i m n → i ^ (m ℕ.+ n) ≡ i ^ m * i ^ n
^-distribˡ-+-* i zero n = sym (*-identityˡ (i ^ n))
^-distribˡ-+-* i (suc m) n = begin
i * (i ^ (m ℕ.+ n)) ≡⟨ cong (i *_) (^-distribˡ-+-* i m n) ⟩
i * ((i ^ m) * (i ^ n)) ≡⟨ sym (*-assoc i _ _) ⟩
(i * (i ^ m)) * (i ^ n) ∎
where open ≡-Reasoning
^-isMagmaHomomorphism : ∀ i → Morphism.IsMagmaHomomorphism ℕ.+-rawMagma *-rawMagma (i ^_)
^-isMagmaHomomorphism i = record
{ isRelHomomorphism = record { cong = cong (i ^_) }
; homo = ^-distribˡ-+-* i
}
^-isMonoidHomomorphism : ∀ i → Morphism.IsMonoidHomomorphism ℕ.+-0-rawMonoid *-1-rawMonoid (i ^_)
^-isMonoidHomomorphism i = record
{ isMagmaHomomorphism = ^-isMagmaHomomorphism i
; ε-homo = refl
}
^-*-assoc : ∀ i m n → (i ^ m) ^ n ≡ i ^ (m ℕ.* n)
^-*-assoc i m zero = cong (i ^_) (sym $ ℕ.*-zeroʳ m)
^-*-assoc i m (suc n) = begin
(i ^ m) * ((i ^ m) ^ n) ≡⟨ cong ((i ^ m) *_) (^-*-assoc i m n) ⟩
(i ^ m) * (i ^ (m ℕ.* n)) ≡⟨ sym (^-distribˡ-+-* i m (m ℕ.* n)) ⟩
i ^ (m ℕ.+ m ℕ.* n) ≡⟨ cong (i ^_) (sym (ℕ.*-suc m n)) ⟩
i ^ (m ℕ.* suc n) ∎
where open ≡-Reasoning
i^n≡0⇒i≡0 : ∀ i n → i ^ n ≡ 0ℤ → i ≡ 0ℤ
i^n≡0⇒i≡0 i (suc n) eq = [ id , i^n≡0⇒i≡0 i n ]′ (i*j≡0⇒i≡0∨j≡0 i eq)
pos-distrib-* : ∀ m n → (+ m) * (+ n) ≡ + (m ℕ.* n)
pos-distrib-* zero n = refl
pos-distrib-* (suc m) zero = pos-distrib-* m zero
pos-distrib-* (suc m) (suc n) = refl
neg-distribˡ-* : ∀ i j → - (i * j) ≡ (- i) * j
neg-distribˡ-* i j = begin
- (i * j) ≡˘⟨ -1*i≡-i (i * j) ⟩
-1ℤ * (i * j) ≡˘⟨ *-assoc -1ℤ i j ⟩
-1ℤ * i * j ≡⟨ cong (_* j) (-1*i≡-i i) ⟩
- i * j ∎ where open ≡-Reasoning
neg-distribʳ-* : ∀ i j → - (i * j) ≡ i * (- j)
neg-distribʳ-* i j = begin
- (i * j) ≡⟨ cong -_ (*-comm i j) ⟩
- (j * i) ≡⟨ neg-distribˡ-* j i ⟩
- j * i ≡⟨ *-comm (- j) i ⟩
i * (- j) ∎ where open ≡-Reasoning
◃-distrib-* : ∀ s t m n → (s 𝕊* t) ◃ (m ℕ.* n) ≡ (s ◃ m) * (t ◃ n)
◃-distrib-* s t zero zero = refl
◃-distrib-* s t zero (suc n) = refl
◃-distrib-* s t (suc m) zero =
trans
(cong₂ _◃_ (𝕊ₚ.*-comm s t) (ℕ.*-comm m 0))
(*-comm (t ◃ zero) (s ◃ suc m))
◃-distrib-* s t (suc m) (suc n) =
sym (cong₂ _◃_
(cong₂ _𝕊*_ (sign-◃ s (suc m)) (sign-◃ t (suc n)))
(∣s◃m∣*∣t◃n∣≡m*n s t (suc m) (suc n)))
*-cancelʳ-≤-pos : ∀ i j k .{{_ : Positive k}} → i * k ≤ j * k → i ≤ j
*-cancelʳ-≤-pos -[1+ m ] -[1+ n ] +[1+ o ] (-≤- n≤m) =
-≤- (ℕ.≤-pred (ℕ.*-cancelʳ-≤ (suc n) (suc m) (suc o) (s≤s n≤m)))
*-cancelʳ-≤-pos -[1+ _ ] (+ _) +[1+ o ] _ = -≤+
*-cancelʳ-≤-pos +0 +0 +[1+ o ] _ = +≤+ z≤n
*-cancelʳ-≤-pos +0 +[1+ _ ] +[1+ o ] _ = +≤+ z≤n
*-cancelʳ-≤-pos +[1+ _ ] +0 +[1+ o ] (+≤+ ())
*-cancelʳ-≤-pos +[1+ m ] +[1+ n ] +[1+ o ] (+≤+ m≤n) =
+≤+ (ℕ.*-cancelʳ-≤ (suc m) (suc n) (suc o) m≤n)
*-cancelˡ-≤-pos : ∀ i j k .{{_ : Positive k}} → k * i ≤ k * j → i ≤ j
*-cancelˡ-≤-pos i j k rewrite *-comm k i | *-comm k j = *-cancelʳ-≤-pos i j k
*-monoʳ-≤-nonNeg : ∀ i .{{_ : NonNegative i}} → (_* i) Preserves _≤_ ⟶ _≤_
*-monoʳ-≤-nonNeg +0 {i} {j} i≤j rewrite *-zeroʳ i | *-zeroʳ j = +≤+ z≤n
*-monoʳ-≤-nonNeg +[1+ n ] (-≤+ {n = 0}) = -≤+
*-monoʳ-≤-nonNeg +[1+ n ] (-≤+ {n = suc _}) = -≤+
*-monoʳ-≤-nonNeg +[1+ n ] (-≤- n≤m) = -≤- (ℕ.≤-pred (ℕ.*-mono-≤ (s≤s n≤m) (ℕ.≤-refl {x = suc n})))
*-monoʳ-≤-nonNeg +[1+ n ] {+0} {+0} (+≤+ m≤n) = +≤+ m≤n
*-monoʳ-≤-nonNeg +[1+ n ] {+0} {+[1+ _ ]} (+≤+ m≤n) = +≤+ z≤n
*-monoʳ-≤-nonNeg +[1+ n ] {+[1+ _ ]} {+[1+ _ ]} (+≤+ m≤n) = +≤+ (ℕ.*-monoˡ-≤ (suc n) m≤n)
*-monoˡ-≤-nonNeg : ∀ i .{{_ : NonNegative i}} → (i *_) Preserves _≤_ ⟶ _≤_
*-monoˡ-≤-nonNeg i {j} {k} rewrite *-comm i j | *-comm i k = *-monoʳ-≤-nonNeg i
*-cancelˡ-≤-neg : ∀ i j k .{{_ : Negative i}} → i * j ≤ i * k → j ≥ k
*-cancelˡ-≤-neg i@(-[1+ _ ]) j k ij≤ik = neg-cancel-≤ (*-cancelˡ-≤-pos (- j) (- k) (- i) (begin
- i * - j ≡˘⟨ neg-distribʳ-* (- i) j ⟩
-(- i * j) ≡⟨ neg-distribˡ-* (- i) j ⟩
i * j ≤⟨ ij≤ik ⟩
i * k ≡˘⟨ neg-distribˡ-* (- i) k ⟩
-(- i * k) ≡⟨ neg-distribʳ-* (- i) k ⟩
- i * - k ∎))
where open ≤-Reasoning
*-cancelʳ-≤-neg : ∀ i j k .{{_ : Negative k}} → i * k ≤ j * k → i ≥ j
*-cancelʳ-≤-neg i j k rewrite *-comm i k | *-comm j k = *-cancelˡ-≤-neg k i j
*-monoˡ-≤-nonPos : ∀ i .{{_ : NonPositive i}} → (i *_) Preserves _≤_ ⟶ _≥_
*-monoˡ-≤-nonPos +0 {j} {k} j≤k = +≤+ z≤n
*-monoˡ-≤-nonPos i@(-[1+ m ]) {j} {k} j≤k = begin
i * k ≡˘⟨ neg-distribˡ-* (- i) k ⟩
-(- i * k) ≡⟨ neg-distribʳ-* (- i) k ⟩
- i * - k ≤⟨ *-monoˡ-≤-nonNeg (- i) (neg-mono-≤ j≤k) ⟩
- i * - j ≡˘⟨ neg-distribʳ-* (- i) j ⟩
-(- i * j) ≡⟨ neg-distribˡ-* (- i) j ⟩
i * j ∎
where open ≤-Reasoning
*-monoʳ-≤-nonPos : ∀ i .{{_ : NonPositive i}} → (_* i) Preserves _≤_ ⟶ _≥_
*-monoʳ-≤-nonPos i {j} {k} rewrite *-comm k i | *-comm j i = *-monoˡ-≤-nonPos i
*-monoˡ-<-pos : ∀ i .{{_ : Positive i}} → (i *_) Preserves _<_ ⟶ _<_
*-monoˡ-<-pos +[1+ n ] {+ m} {+ o} (+<+ m<o) = +◃-mono-< (ℕ.+-mono-<-≤ m<o (ℕ.*-monoʳ-≤ n (ℕ.<⇒≤ m<o)))
*-monoˡ-<-pos +[1+ n ] { -[1+ m ]} {+ o} leq = -◃<+◃ _ (suc n ℕ.* o)
*-monoˡ-<-pos +[1+ n ] { -[1+ m ]} { -[1+ o ]} (-<- o<m) = -<- (ℕ.+-mono-<-≤ o<m (ℕ.*-monoʳ-≤ n (ℕ.<⇒≤ (s≤s o<m))))
*-monoʳ-<-pos : ∀ i .{{_ : Positive i}} → (_* i) Preserves _<_ ⟶ _<_
*-monoʳ-<-pos i {j} {k} rewrite *-comm j i | *-comm k i = *-monoˡ-<-pos i
*-cancelˡ-<-nonNeg : ∀ k .{{_ : NonNegative k}} → k * i < k * j → i < j
*-cancelˡ-<-nonNeg {+ i} {+ j} (+ n) leq = +<+ (ℕ.*-cancelˡ-< n (+◃-cancel-< leq))
*-cancelˡ-<-nonNeg {+ i} { -[1+ j ]} (+ n) leq = contradiction leq +◃≮-◃
*-cancelˡ-<-nonNeg { -[1+ i ]} {+ j} (+ n)leq = -<+
*-cancelˡ-<-nonNeg { -[1+ i ]} { -[1+ j ]} (+ n) leq = -<- (ℕ.≤-pred (ℕ.*-cancelˡ-< n (neg◃-cancel-< leq)))
*-cancelʳ-<-nonNeg : ∀ k .{{_ : NonNegative k}} → i * k < j * k → i < j
*-cancelʳ-<-nonNeg {i} {j} k rewrite *-comm i k | *-comm j k = *-cancelˡ-<-nonNeg k
*-monoˡ-<-neg : ∀ i .{{_ : Negative i}} → (i *_) Preserves _<_ ⟶ _>_
*-monoˡ-<-neg i@(-[1+ _ ]) {j} {k} j<k = begin-strict
i * k ≡˘⟨ neg-distribˡ-* (- i) k ⟩
-(- i * k) ≡⟨ neg-distribʳ-* (- i) k ⟩
- i * - k <⟨ *-monoˡ-<-pos (- i) (neg-mono-< j<k) ⟩
- i * - j ≡˘⟨ neg-distribʳ-* (- i) j ⟩
- (- i * j) ≡⟨ neg-distribˡ-* (- i) j ⟩
i * j ∎
where open ≤-Reasoning
*-monoʳ-<-neg : ∀ i .{{_ : Negative i}} → (_* i) Preserves _<_ ⟶ _>_
*-monoʳ-<-neg i {j} {k} rewrite *-comm k i | *-comm j i = *-monoˡ-<-neg i
*-cancelˡ-<-nonPos : ∀ k .{{_ : NonPositive k}} → k * i < k * j → i > j
*-cancelˡ-<-nonPos {i} {j} +0 (+<+ ())
*-cancelˡ-<-nonPos {i} {j} k@(-[1+ _ ]) ki<kj = neg-cancel-< (*-cancelˡ-<-nonNeg (- k) (begin-strict
- k * - i ≡˘⟨ neg-distribʳ-* (- k) i ⟩
-(- k * i) ≡⟨ neg-distribˡ-* (- k) i ⟩
k * i <⟨ ki<kj ⟩
k * j ≡˘⟨ neg-distribˡ-* (- k) j ⟩
-(- k * j) ≡⟨ neg-distribʳ-* (- k) j ⟩
- k * - j ∎))
where open ≤-Reasoning
*-cancelʳ-<-nonPos : ∀ k .{{_ : NonPositive k}} → i * k < j * k → i > j
*-cancelʳ-<-nonPos {i} {j} k rewrite *-comm i k | *-comm j k = *-cancelˡ-<-nonPos k
*-cancelˡ-<-neg : ∀ n → -[1+ n ] * i < -[1+ n ] * j → i > j
*-cancelˡ-<-neg {i} {j} n = *-cancelˡ-<-nonPos -[1+ n ]
*-cancelʳ-<-neg : ∀ n → i * -[1+ n ] < j * -[1+ n ] → i > j
*-cancelʳ-<-neg {i} {j} n = *-cancelʳ-<-nonPos -[1+ n ]
∣i*j∣≡∣i∣*∣j∣ : ∀ i j → ∣ i * j ∣ ≡ ∣ i ∣ ℕ.* ∣ j ∣
∣i*j∣≡∣i∣*∣j∣ i j = abs-◃ (sign i 𝕊* sign j) (∣ i ∣ ℕ.* ∣ j ∣)
i≤j⇒i⊓j≡i : i ≤ j → i ⊓ j ≡ i
i≤j⇒i⊓j≡i (-≤- i≥j) = cong -[1+_] (ℕ.m≥n⇒m⊔n≡m i≥j)
i≤j⇒i⊓j≡i -≤+ = refl
i≤j⇒i⊓j≡i (+≤+ i≤j) = cong +_ (ℕ.m≤n⇒m⊓n≡m i≤j)
i≥j⇒i⊓j≡j : i ≥ j → i ⊓ j ≡ j
i≥j⇒i⊓j≡j (-≤- i≥j) = cong -[1+_] (ℕ.m≤n⇒m⊔n≡n i≥j)
i≥j⇒i⊓j≡j -≤+ = refl
i≥j⇒i⊓j≡j (+≤+ i≤j) = cong +_ (ℕ.m≥n⇒m⊓n≡n i≤j)
i≤j⇒i⊔j≡j : i ≤ j → i ⊔ j ≡ j
i≤j⇒i⊔j≡j (-≤- i≥j) = cong -[1+_] (ℕ.m≥n⇒m⊓n≡n i≥j)
i≤j⇒i⊔j≡j -≤+ = refl
i≤j⇒i⊔j≡j (+≤+ i≤j) = cong +_ (ℕ.m≤n⇒m⊔n≡n i≤j)
i≥j⇒i⊔j≡i : i ≥ j → i ⊔ j ≡ i
i≥j⇒i⊔j≡i (-≤- i≥j) = cong -[1+_] (ℕ.m≤n⇒m⊓n≡m i≥j)
i≥j⇒i⊔j≡i -≤+ = refl
i≥j⇒i⊔j≡i (+≤+ i≤j) = cong +_ (ℕ.m≥n⇒m⊔n≡m i≤j)
⊓-operator : MinOperator ≤-totalPreorder
⊓-operator = record
{ x≤y⇒x⊓y≈x = i≤j⇒i⊓j≡i
; x≥y⇒x⊓y≈y = i≥j⇒i⊓j≡j
}
⊔-operator : MaxOperator ≤-totalPreorder
⊔-operator = record
{ x≤y⇒x⊔y≈y = i≤j⇒i⊔j≡j
; x≥y⇒x⊔y≈x = i≥j⇒i⊔j≡i
}
private
module ⊓-⊔-properties = MinMaxOp ⊓-operator ⊔-operator
module ⊓-⊔-latticeProperties = LatticeMinMaxOp ⊓-operator ⊔-operator
open ⊓-⊔-properties public
using
( ⊓-idem
; ⊓-sel
; ⊓-assoc
; ⊓-comm
; ⊔-idem
; ⊔-sel
; ⊔-assoc
; ⊔-comm
; ⊓-distribˡ-⊔
; ⊓-distribʳ-⊔
; ⊓-distrib-⊔
; ⊔-distribˡ-⊓
; ⊔-distribʳ-⊓
; ⊔-distrib-⊓
; ⊓-absorbs-⊔
; ⊔-absorbs-⊓
; ⊔-⊓-absorptive
; ⊓-⊔-absorptive
; ⊓-isMagma
; ⊓-isSemigroup
; ⊓-isCommutativeSemigroup
; ⊓-isBand
; ⊓-isSelectiveMagma
; ⊔-isMagma
; ⊔-isSemigroup
; ⊔-isCommutativeSemigroup
; ⊔-isBand
; ⊔-isSelectiveMagma
; ⊓-magma
; ⊓-semigroup
; ⊓-band
; ⊓-commutativeSemigroup
; ⊓-selectiveMagma
; ⊔-magma
; ⊔-semigroup
; ⊔-band
; ⊔-commutativeSemigroup
; ⊔-selectiveMagma
; ⊓-glb
; ⊓-triangulate
; ⊓-mono-≤
; ⊓-monoˡ-≤
; ⊓-monoʳ-≤
; ⊔-lub
; ⊔-triangulate
; ⊔-mono-≤
; ⊔-monoˡ-≤
; ⊔-monoʳ-≤
)
renaming
( x⊓y≈y⇒y≤x to i⊓j≡j⇒j≤i
; x⊓y≈x⇒x≤y to i⊓j≡i⇒i≤j
; x⊓y≤x to i⊓j≤i
; x⊓y≤y to i⊓j≤j
; x≤y⇒x⊓z≤y to i≤j⇒i⊓k≤j
; x≤y⇒z⊓x≤y to i≤j⇒k⊓i≤j
; x≤y⊓z⇒x≤y to i≤j⊓k⇒i≤j
; x≤y⊓z⇒x≤z to i≤j⊓k⇒i≤k
; x⊔y≈y⇒x≤y to i⊔j≡j⇒i≤j
; x⊔y≈x⇒y≤x to i⊔j≡i⇒j≤i
; x≤x⊔y to i≤i⊔j
; x≤y⊔x to i≤j⊔i
; x≤y⇒x≤y⊔z to i≤j⇒i≤j⊔k
; x≤y⇒x≤z⊔y to i≤j⇒i≤k⊔j
; x⊔y≤z⇒x≤z to i⊔j≤k⇒i≤k
; x⊔y≤z⇒y≤z to i⊔j≤k⇒j≤k
; x⊓y≤x⊔y to i⊓j≤i⊔j
)
open ⊓-⊔-latticeProperties public
using
( ⊓-isSemilattice
; ⊔-isSemilattice
; ⊔-⊓-isLattice
; ⊓-⊔-isLattice
; ⊔-⊓-isDistributiveLattice
; ⊓-⊔-isDistributiveLattice
; ⊓-semilattice
; ⊔-semilattice
; ⊔-⊓-lattice
; ⊓-⊔-lattice
; ⊔-⊓-distributiveLattice
; ⊓-⊔-distributiveLattice
)
mono-≤-distrib-⊔ : ∀ {f} → f Preserves _≤_ ⟶ _≤_ →
∀ i j → f (i ⊔ j) ≡ f i ⊔ f j
mono-≤-distrib-⊔ {f} = ⊓-⊔-properties.mono-≤-distrib-⊔ (cong f)
mono-≤-distrib-⊓ : ∀ {f} → f Preserves _≤_ ⟶ _≤_ →
∀ i j → f (i ⊓ j) ≡ f i ⊓ f j
mono-≤-distrib-⊓ {f} = ⊓-⊔-properties.mono-≤-distrib-⊓ (cong f)
antimono-≤-distrib-⊓ : ∀ {f} → f Preserves _≤_ ⟶ _≥_ →
∀ i j → f (i ⊓ j) ≡ f i ⊔ f j
antimono-≤-distrib-⊓ {f} = ⊓-⊔-properties.antimono-≤-distrib-⊓ (cong f)
antimono-≤-distrib-⊔ : ∀ {f} → f Preserves _≤_ ⟶ _≥_ →
∀ i j → f (i ⊔ j) ≡ f i ⊓ f j
antimono-≤-distrib-⊔ {f} = ⊓-⊔-properties.antimono-≤-distrib-⊔ (cong f)
mono-<-distrib-⊓ : ∀ f → f Preserves _<_ ⟶ _<_ → ∀ i j → f (i ⊓ j) ≡ f i ⊓ f j
mono-<-distrib-⊓ f f-mono-< i j with <-cmp i j
... | tri< i<j _ _ = trans (cong f (i≤j⇒i⊓j≡i (<⇒≤ i<j))) (sym (i≤j⇒i⊓j≡i (<⇒≤ (f-mono-< i<j))))
... | tri≈ _ refl _ = trans (cong f (i≤j⇒i⊓j≡i ≤-refl)) (sym (i≤j⇒i⊓j≡i ≤-refl))
... | tri> _ _ i>j = trans (cong f (i≥j⇒i⊓j≡j (<⇒≤ i>j))) (sym (i≥j⇒i⊓j≡j (<⇒≤ (f-mono-< i>j))))
mono-<-distrib-⊔ : ∀ f → f Preserves _<_ ⟶ _<_ → ∀ i j → f (i ⊔ j) ≡ f i ⊔ f j
mono-<-distrib-⊔ f f-mono-< i j with <-cmp i j
... | tri< i<j _ _ = trans (cong f (i≤j⇒i⊔j≡j (<⇒≤ i<j))) (sym (i≤j⇒i⊔j≡j (<⇒≤ (f-mono-< i<j))))
... | tri≈ _ refl _ = trans (cong f (i≤j⇒i⊔j≡j ≤-refl)) (sym (i≤j⇒i⊔j≡j ≤-refl))
... | tri> _ _ i>j = trans (cong f (i≥j⇒i⊔j≡i (<⇒≤ i>j))) (sym (i≥j⇒i⊔j≡i (<⇒≤ (f-mono-< i>j))))
antimono-<-distrib-⊔ : ∀ f → f Preserves _<_ ⟶ _>_ → ∀ i j → f (i ⊔ j) ≡ f i ⊓ f j
antimono-<-distrib-⊔ f f-mono-< i j with <-cmp i j
... | tri< i<j _ _ = trans (cong f (i≤j⇒i⊔j≡j (<⇒≤ i<j))) (sym (i≥j⇒i⊓j≡j (<⇒≤ (f-mono-< i<j))))
... | tri≈ _ refl _ = trans (cong f (i≤j⇒i⊔j≡j ≤-refl)) (sym (i≥j⇒i⊓j≡j ≤-refl))
... | tri> _ _ i>j = trans (cong f (i≥j⇒i⊔j≡i (<⇒≤ i>j))) (sym (i≤j⇒i⊓j≡i (<⇒≤ (f-mono-< i>j))))
antimono-<-distrib-⊓ : ∀ f → f Preserves _<_ ⟶ _>_ → ∀ i j → f (i ⊓ j) ≡ f i ⊔ f j
antimono-<-distrib-⊓ f f-mono-< i j with <-cmp i j
... | tri< i<j _ _ = trans (cong f (i≤j⇒i⊓j≡i (<⇒≤ i<j))) (sym (i≥j⇒i⊔j≡i (<⇒≤ (f-mono-< i<j))))
... | tri≈ _ refl _ = trans (cong f (i≤j⇒i⊓j≡i ≤-refl)) (sym (i≥j⇒i⊔j≡i ≤-refl))
... | tri> _ _ i>j = trans (cong f (i≥j⇒i⊓j≡j (<⇒≤ i>j))) (sym (i≤j⇒i⊔j≡j (<⇒≤ (f-mono-< i>j))))
neg-distrib-⊔-⊓ : ∀ i j → - (i ⊔ j) ≡ - i ⊓ - j
neg-distrib-⊔-⊓ = antimono-<-distrib-⊔ -_ neg-mono-<
neg-distrib-⊓-⊔ : ∀ i j → - (i ⊓ j) ≡ - i ⊔ - j
neg-distrib-⊓-⊔ = antimono-<-distrib-⊓ -_ neg-mono-<
*-distribˡ-⊓-nonNeg : ∀ i j k .{{_ : NonNegative i}} →
i * (j ⊓ k) ≡ (i * j) ⊓ (i * k)
*-distribˡ-⊓-nonNeg i j k = mono-≤-distrib-⊓ (*-monoˡ-≤-nonNeg i) j k
*-distribʳ-⊓-nonNeg : ∀ i j k .{{_ : NonNegative i}} →
(j ⊓ k) * i ≡ (j * i) ⊓ (k * i)
*-distribʳ-⊓-nonNeg i j k = mono-≤-distrib-⊓ (*-monoʳ-≤-nonNeg i) j k
*-distribˡ-⊓-nonPos : ∀ i j k .{{_ : NonPositive i}} →
i * (j ⊓ k) ≡ (i * j) ⊔ (i * k)
*-distribˡ-⊓-nonPos i j k = antimono-≤-distrib-⊓ (*-monoˡ-≤-nonPos i) j k
*-distribʳ-⊓-nonPos : ∀ i j k .{{_ : NonPositive i}} →
(j ⊓ k) * i ≡ (j * i) ⊔ (k * i)
*-distribʳ-⊓-nonPos i j k = antimono-≤-distrib-⊓ (*-monoʳ-≤-nonPos i) j k
*-distribˡ-⊔-nonNeg : ∀ i j k .{{_ : NonNegative i}} →
i * (j ⊔ k) ≡ (i * j) ⊔ (i * k)
*-distribˡ-⊔-nonNeg i j k = mono-≤-distrib-⊔ (*-monoˡ-≤-nonNeg i) j k
*-distribʳ-⊔-nonNeg : ∀ i j k .{{_ : NonNegative i}} →
(j ⊔ k) * i ≡ (j * i) ⊔ (k * i)
*-distribʳ-⊔-nonNeg i j k = mono-≤-distrib-⊔ (*-monoʳ-≤-nonNeg i) j k
*-distribˡ-⊔-nonPos : ∀ i j k .{{_ : NonPositive i}} →
i * (j ⊔ k) ≡ (i * j) ⊓ (i * k)
*-distribˡ-⊔-nonPos i j k = antimono-≤-distrib-⊔ (*-monoˡ-≤-nonPos i) j k
*-distribʳ-⊔-nonPos : ∀ i j k .{{_ : NonPositive i}} →
(j ⊔ k) * i ≡ (j * i) ⊓ (k * i)
*-distribʳ-⊔-nonPos i j k = antimono-≤-distrib-⊔ (*-monoʳ-≤-nonPos i) j k
neg-mono-<-> = neg-mono-<
{-# WARNING_ON_USAGE neg-mono-<->
"Warning: neg-mono-<-> was deprecated in v1.5.
Please use neg-mono-< instead."
#-}
neg-mono-≤-≥ = neg-mono-≤
{-# WARNING_ON_USAGE neg-mono-≤-≥
"Warning: neg-mono-≤-≥ was deprecated in v1.5.
Please use neg-mono-≤ instead."
#-}
*-monoʳ-≤-non-neg = *-monoʳ-≤-nonNeg
{-# WARNING_ON_USAGE *-monoʳ-≤-non-neg
"Warning: *-monoʳ-≤-non-neg was deprecated in v1.5.
Please use *-monoʳ-≤-nonNeg instead."
#-}
*-monoˡ-≤-non-neg = *-monoˡ-≤-nonNeg
{-# WARNING_ON_USAGE *-monoˡ-≤-non-neg
"Warning: *-monoˡ-≤-non-neg deprecated in v1.5.
Please use *-monoˡ-≤-nonNeg instead."
#-}
*-cancelˡ-<-non-neg = *-cancelˡ-<-nonNeg
{-# WARNING_ON_USAGE *-cancelˡ-<-non-neg
"Warning: *-cancelˡ-<-non-neg was deprecated in v1.5.
Please use *-cancelˡ-<-nonNeg instead."
#-}
*-cancelʳ-<-non-neg = *-cancelʳ-<-nonNeg
{-# WARNING_ON_USAGE *-cancelʳ-<-non-neg
"Warning: *-cancelʳ-<-non-neg was deprecated in v1.5.
Please use *-cancelʳ-<-nonNeg instead."
#-}
m≤n⇒m⊓n≡m = i≤j⇒i⊓j≡i
{-# WARNING_ON_USAGE m≤n⇒m⊓n≡m
"Warning: m≤n⇒m⊓n≡m was deprecated in v1.6
Please use i≤j⇒i⊓j≡i instead."
#-}
m⊓n≡m⇒m≤n = i⊓j≡i⇒i≤j
{-# WARNING_ON_USAGE m⊓n≡m⇒m≤n
"Warning: m≤n⇒m⊓n≡m was deprecated in v1.6
Please use i⊓j≡i⇒i≤j instead."
#-}
m≥n⇒m⊓n≡n = i≥j⇒i⊓j≡j
{-# WARNING_ON_USAGE m≥n⇒m⊓n≡n
"Warning: m≥n⇒m⊓n≡n was deprecated in v1.6
Please use i≥j⇒i⊓j≡j instead."
#-}
m⊓n≡n⇒m≥n = i⊓j≡j⇒j≤i
{-# WARNING_ON_USAGE m⊓n≡n⇒m≥n
"Warning: m⊓n≡n⇒m≥n was deprecated in v1.6
Please use i⊓j≡j⇒j≤i instead."
#-}
m⊓n≤n = i⊓j≤j
{-# WARNING_ON_USAGE m⊓n≤n
"Warning: m⊓n≤n was deprecated in v1.6
Please use i⊓j≤j instead."
#-}
m⊓n≤m = i⊓j≤i
{-# WARNING_ON_USAGE m⊓n≤m
"Warning: m⊓n≤m was deprecated in v1.6
Please use i⊓j≤i instead."
#-}
m≤n⇒m⊔n≡n = i≤j⇒i⊔j≡j
{-# WARNING_ON_USAGE m≤n⇒m⊔n≡n
"Warning: m≤n⇒m⊔n≡n was deprecated in v1.6
Please use i≤j⇒i⊔j≡j instead."
#-}
m⊔n≡n⇒m≤n = i⊔j≡j⇒i≤j
{-# WARNING_ON_USAGE m⊔n≡n⇒m≤n
"Warning: m⊔n≡n⇒m≤n was deprecated in v1.6
Please use i⊔j≡j⇒i≤j instead."
#-}
m≥n⇒m⊔n≡m = i≥j⇒i⊔j≡i
{-# WARNING_ON_USAGE m≥n⇒m⊔n≡m
"Warning: m≥n⇒m⊔n≡m was deprecated in v1.6
Please use i≥j⇒i⊔j≡i instead."
#-}
m⊔n≡m⇒m≥n = i⊔j≡i⇒j≤i
{-# WARNING_ON_USAGE m⊔n≡m⇒m≥n
"Warning: m⊔n≡m⇒m≥n was deprecated in v1.6
Please use i⊔j≡i⇒j≤i instead."
#-}
m≤m⊔n = i≤i⊔j
{-# WARNING_ON_USAGE m≤m⊔n
"Warning: m≤m⊔n was deprecated in v1.6
Please use i≤i⊔j instead."
#-}
n≤m⊔n = i≤j⊔i
{-# WARNING_ON_USAGE n≤m⊔n
"Warning: n≤m⊔n was deprecated in v1.6
Please use i≤j⊔i instead."
#-}
+-pos-monoʳ-≤ : ∀ n → (_+_ (+ n)) Preserves _≤_ ⟶ _≤_
+-pos-monoʳ-≤ n {_} (-≤- o≤m) = ⊖-monoʳ-≥-≤ n (s≤s o≤m)
+-pos-monoʳ-≤ n { -[1+ m ]} -≤+ = ≤-trans (m⊖n≤m n (suc m)) (+≤+ (ℕ.m≤m+n n _))
+-pos-monoʳ-≤ n {_} (+≤+ m≤o) = +≤+ (ℕ.+-monoʳ-≤ n m≤o)
{-# WARNING_ON_USAGE +-pos-monoʳ-≤
"Warning: +-pos-monoʳ-≤ was deprecated in v2.0
Please use +-monoʳ-≤ instead."
#-}
+-neg-monoʳ-≤ : ∀ n → (_+_ (-[1+ n ])) Preserves _≤_ ⟶ _≤_
+-neg-monoʳ-≤ n {_} {_} (-≤- n≤m) = -≤- (ℕ.+-monoʳ-≤ (suc n) n≤m)
+-neg-monoʳ-≤ n {_} {+ m} -≤+ = ≤-trans (-≤- (ℕ.m≤m+n (suc n) _)) (-1+m≤n⊖m (suc n) m)
+-neg-monoʳ-≤ n {_} {_} (+≤+ m≤n) = ⊖-monoˡ-≤ (suc n) m≤n
{-# WARNING_ON_USAGE +-neg-monoʳ-≤
"Warning: +-neg-monoʳ-≤ was deprecated in v2.0
Please use +-monoʳ-≤ instead."
#-}
n≮n = i≮i
{-# WARNING_ON_USAGE n≮n
"Warning: n≮n was deprecated in v2.0
Please use i≮i instead."
#-}
∣n∣≡0⇒n≡0 = ∣i∣≡0⇒i≡0
{-# WARNING_ON_USAGE ∣n∣≡0⇒n≡0
"Warning: ∣n∣≡0⇒n≡0 was deprecated in v2.0
Please use ∣i∣≡0⇒i≡0 instead."
#-}
∣-n∣≡∣n∣ = ∣-i∣≡∣i∣
{-# WARNING_ON_USAGE ∣-n∣≡∣n∣
"Warning: ∣-n∣≡∣n∣ was deprecated in v2.0
Please use ∣-i∣≡∣i∣ instead."
#-}
0≤n⇒+∣n∣≡n = 0≤i⇒+∣i∣≡i
{-# WARNING_ON_USAGE 0≤n⇒+∣n∣≡n
"Warning: 0≤n⇒+∣n∣≡n was deprecated in v2.0
Please use 0≤i⇒+∣i∣≡i instead."
#-}
+∣n∣≡n⇒0≤n = +∣i∣≡i⇒0≤i
{-# WARNING_ON_USAGE +∣n∣≡n⇒0≤n
"Warning: +∣n∣≡n⇒0≤n was deprecated in v2.0
Please use +∣i∣≡i⇒0≤i instead."
#-}
+∣n∣≡n⊎+∣n∣≡-n = +∣i∣≡i⊎+∣i∣≡-i
{-# WARNING_ON_USAGE +∣n∣≡n⊎+∣n∣≡-n
"Warning: +∣n∣≡n⊎+∣n∣≡-n was deprecated in v2.0
Please use +∣i∣≡i⊎+∣i∣≡-i instead."
#-}
∣m+n∣≤∣m∣+∣n∣ = ∣i+j∣≤∣i∣+∣j∣
{-# WARNING_ON_USAGE ∣m+n∣≤∣m∣+∣n∣
"Warning: ∣m+n∣≤∣m∣+∣n∣ was deprecated in v2.0
Please use ∣i+j∣≤∣i∣+∣j∣ instead."
#-}
∣m-n∣≤∣m∣+∣n∣ = ∣i-j∣≤∣i∣+∣j∣
{-# WARNING_ON_USAGE ∣m-n∣≤∣m∣+∣n∣
"Warning: ∣m-n∣≤∣m∣+∣n∣ was deprecated in v2.0
Please use ∣i-j∣≤∣i∣+∣j∣ instead."
#-}
signₙ◃∣n∣≡n = signᵢ◃∣i∣≡i
{-# WARNING_ON_USAGE signₙ◃∣n∣≡n
"Warning: signₙ◃∣n∣≡n was deprecated in v2.0
Please use signᵢ◃∣i∣≡i instead."
#-}
◃-≡ = ◃-cong
{-# WARNING_ON_USAGE ◃-≡
"Warning: ◃-≡ was deprecated in v2.0
Please use ◃-cong instead."
#-}
∣m-n∣≡∣n-m∣ = ∣i-j∣≡∣j-i∣
{-# WARNING_ON_USAGE ∣m-n∣≡∣n-m∣
"Warning: ∣m-n∣≡∣n-m∣ was deprecated in v2.0
Please use ∣i-j∣≡∣j-i∣ instead."
#-}
m≡n⇒m-n≡0 = i≡j⇒i-j≡0
{-# WARNING_ON_USAGE m≡n⇒m-n≡0
"Warning: m≡n⇒m-n≡0 was deprecated in v2.0
Please use i≡j⇒i-j≡0 instead."
#-}
m-n≡0⇒m≡n = i-j≡0⇒i≡j
{-# WARNING_ON_USAGE m-n≡0⇒m≡n
"Warning: m-n≡0⇒m≡n was deprecated in v2.0
Please use i-j≡0⇒i≡j instead."
#-}
m≤n⇒m-n≤0 = i≤j⇒i-j≤0
{-# WARNING_ON_USAGE m≤n⇒m-n≤0
"Warning: m≤n⇒m-n≤0 was deprecated in v2.0
Please use i≤j⇒i-j≤0 instead."
#-}
m-n≤0⇒m≤n = i-j≤0⇒i≤j
{-# WARNING_ON_USAGE m-n≤0⇒m≤n
"Warning: m-n≤0⇒m≤n was deprecated in v2.0
Please use i-j≤0⇒i≤j instead."
#-}
m≤n⇒0≤n-m = i≤j⇒0≤j-i
{-# WARNING_ON_USAGE m≤n⇒0≤n-m
"Warning: m≤n⇒0≤n-m was deprecated in v2.0
Please use i≤j⇒0≤j-i instead."
#-}
0≤n-m⇒m≤n = 0≤i-j⇒j≤i
{-# WARNING_ON_USAGE 0≤n-m⇒m≤n
"Warning: 0≤n-m⇒m≤n was deprecated in v2.0
Please use 0≤i-j⇒j≤i instead."
#-}
n≤1+n = i≤suc[i]
{-# WARNING_ON_USAGE n≤1+n
"Warning: n≤1+n was deprecated in v2.0
Please use i≤suc[i] instead."
#-}
n≢1+n = i≢suc[i]
{-# WARNING_ON_USAGE n≢1+n
"Warning: n≢1+n was deprecated in v2.0
Please use i≢suc[i] instead."
#-}
m≤pred[n]⇒m<n = i≤pred[j]⇒i<j
{-# WARNING_ON_USAGE m≤pred[n]⇒m<n
"Warning: m≤pred[n]⇒m<n was deprecated in v2.0
Please use i≤pred[j]⇒i<j instead."
#-}
m<n⇒m≤pred[n] = i<j⇒i≤pred[j]
{-# WARNING_ON_USAGE m<n⇒m≤pred[n]
"Warning: m<n⇒m≤pred[n] was deprecated in v2.0
Please use i<j⇒i≤pred[j] instead."
#-}
-1*n≡-n = -1*i≡-i
{-# WARNING_ON_USAGE -1*n≡-n
"Warning: -1*n≡-n was deprecated in v2.0
Please use -1*i≡-i instead."
#-}
m*n≡0⇒m≡0∨n≡0 = i*j≡0⇒i≡0∨j≡0
{-# WARNING_ON_USAGE m*n≡0⇒m≡0∨n≡0
"Warning: m*n≡0⇒m≡0∨n≡0 was deprecated in v2.0
Please use i*j≡0⇒i≡0∨j≡0 instead."
#-}
∣m*n∣≡∣m∣*∣n∣ = ∣i*j∣≡∣i∣*∣j∣
{-# WARNING_ON_USAGE ∣m*n∣≡∣m∣*∣n∣
"Warning: ∣m*n∣≡∣m∣*∣n∣ was deprecated in v2.0
Please use ∣i*j∣≡∣i∣*∣j∣ instead."
#-}
n≤m+n : ∀ n → i ≤ + n + i
n≤m+n {i} n = ≤-steps (+ n) ≤-refl
{-# WARNING_ON_USAGE n≤m+n
"Warning: n≤m+n was deprecated in v2.0
Please use i≤j+i instead. Note the change of form of the explicit arguments."
#-}
m≤m+n : ∀ n → i ≤ i + + n
m≤m+n {i} n rewrite +-comm i (+ n) = i≤j+i i (+ n)
{-# WARNING_ON_USAGE m≤m+n
"Warning: m≤m+n was deprecated in v2.0
Please use i≤i+j instead. Note the change of form of the explicit arguments."
#-}
m-n≤m : ∀ i n → i - + n ≤ i
m-n≤m i n = ≤-steps-neg (+ n) ≤-refl
{-# WARNING_ON_USAGE m-n≤m
"Warning: m-n≤m was deprecated in v2.0
Please use i-j≤i instead. Note the change of form of the explicit arguments."
#-}
*-monoʳ-≤-pos : ∀ n → (_* + suc n) Preserves _≤_ ⟶ _≤_
*-monoʳ-≤-pos n = *-monoʳ-≤-nonNeg +[1+ n ]
{-# WARNING_ON_USAGE *-monoʳ-≤-pos
"Warning: *-monoʳ-≤-pos was deprecated in v2.0
Please use *-monoʳ-≤-nonNeg instead."
#-}
*-monoˡ-≤-pos : ∀ n → (+ suc n *_) Preserves _≤_ ⟶ _≤_
*-monoˡ-≤-pos n = *-monoˡ-≤-nonNeg +[1+ n ]
{-# WARNING_ON_USAGE *-monoˡ-≤-pos
"Warning: *-monoˡ-≤-pos was deprecated in v2.0
Please use *-monoˡ-≤-nonNeg instead."
#-}
*-monoˡ-≤-neg : ∀ m → (-[1+ m ] *_) Preserves _≤_ ⟶ _≥_
*-monoˡ-≤-neg m = *-monoˡ-≤-nonPos -[1+ m ]
{-# WARNING_ON_USAGE *-monoˡ-≤-neg
"Warning: *-monoˡ-≤-neg was deprecated in v2.0
Please use *-monoˡ-≤-nonPos instead."
#-}
*-monoʳ-≤-neg : ∀ m → (_* -[1+ m ]) Preserves _≤_ ⟶ _≥_
*-monoʳ-≤-neg m = *-monoʳ-≤-nonPos -[1+ m ]
{-# WARNING_ON_USAGE *-monoʳ-≤-neg
"Warning: *-monoʳ-≤-neg was deprecated in v2.0
Please use *-monoʳ-≤-nonPos instead."
#-}