------------------------------------------------------------------------
-- The Agda standard library
--
-- Rational numbers in non-reduced form.
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Data.Rational.Unnormalised.Base where

open import Data.Bool.Base using (Bool; true; false; if_then_else_)
open import Data.Integer.Base as 
  using (; +_; +0; +[1+_]; -[1+_]; +<+; +≤+)
open import Data.Nat.Base as  using (; zero; suc)
open import Level using (0ℓ)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Unary using (Pred)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.PropositionalEquality.Core
  using (_≡_; _≢_; refl)

------------------------------------------------------------------------
-- Definition

-- Here we define rationals that are not necessarily in reduced form.
-- Consequently there are multiple ways of representing a given rational
-- number, and the performance of the arithmetic operations may suffer
-- due to blowup of the numerator and denominator.

-- Nonetheless they are much easier to reason about. In general proofs
-- are first proved for these unnormalised rationals and then translated
-- into the normalised rationals.

record ℚᵘ : Set where
  -- We add "no-eta-equality; pattern" to the record to stop Agda
  -- automatically unfolding rationals when arithmetic operations are
  -- applied to them (see definition of operators below and Issue #1753
  -- for details).
  no-eta-equality; pattern

  constructor mkℚᵘ
  field
    numerator     : 
    denominator-1 : 

  denominatorℕ : 
  denominatorℕ = suc denominator-1

  denominator : 
  denominator = + denominatorℕ

open ℚᵘ public using ()
  renaming
  ( numerator    to ↥_
  ; denominator  to ↧_
  ; denominatorℕ to ↧ₙ_
  )

------------------------------------------------------------------------
-- Equality of rational numbers (does not coincide with _≡_)

infix 4 _≃_ _≠_

data _≃_ : Rel ℚᵘ 0ℓ where
  *≡* :  {p q}  ( p ℤ.*  q)  ( q ℤ.*  p)  p  q

_≠_ : Rel ℚᵘ 0ℓ
p  q = ¬ (p  q)

------------------------------------------------------------------------
-- Ordering of rationals

infix 4 _≤_ _<_ _≥_ _>_ _≰_ _≱_ _≮_ _≯_

data _≤_ : Rel ℚᵘ 0ℓ where
  *≤* :  {p q}  ( p ℤ.*  q) ℤ.≤ ( q ℤ.*  p)  p  q

data _<_ : Rel ℚᵘ 0ℓ where
  *<* :  {p q}  ( p ℤ.*  q) ℤ.< ( q ℤ.*  p)  p < q

_≥_ : Rel ℚᵘ 0ℓ
x  y = y  x

_>_ : Rel ℚᵘ 0ℓ
x > y = y < x

_≰_ : Rel ℚᵘ 0ℓ
x  y = ¬ (x  y)

_≱_ : Rel ℚᵘ 0ℓ
x  y = ¬ (x  y)

_≮_ : Rel ℚᵘ 0ℓ
x  y = ¬ (x < y)

_≯_ : Rel ℚᵘ 0ℓ
x  y = ¬ (x > y)

------------------------------------------------------------------------
-- Boolean ordering

infix 4 _≤ᵇ_

_≤ᵇ_ : ℚᵘ  ℚᵘ  Bool
p ≤ᵇ q = ( p ℤ.*  q) ℤ.≤ᵇ ( q ℤ.*  p)

------------------------------------------------------------------------
-- Constructing rationals

-- An alternative constructor for ℚᵘ. See the constants section below
-- for examples of how to use this operator.

infixl 7 _/_

_/_ : (n : ) (d : ) .{{_ : ℕ.NonZero d}}  ℚᵘ
n / suc d = mkℚᵘ n d

------------------------------------------------------------------------------
-- Some constants

0ℚᵘ : ℚᵘ
0ℚᵘ = + 0 / 1

1ℚᵘ : ℚᵘ
1ℚᵘ = + 1 / 1

½ : ℚᵘ
½ = + 1 / 2

 : ℚᵘ
 = ℤ.- (+ 1) / 2

------------------------------------------------------------------------
-- Simple predicates

NonZero : Pred ℚᵘ 0ℓ
NonZero p = ℤ.NonZero ( p)

Positive : Pred ℚᵘ 0ℓ
Positive p = ℤ.Positive ( p)

Negative : Pred ℚᵘ 0ℓ
Negative p = ℤ.Negative ( p)

NonPositive : Pred ℚᵘ 0ℓ
NonPositive p = ℤ.NonPositive ( p)

NonNegative : Pred ℚᵘ 0ℓ
NonNegative p = ℤ.NonNegative ( p)

-- Constructors and destructors

-- Note: these could be proved more elegantly using the constructors
-- from ℤ but it requires importing `Data.Integer.Properties` which
-- we would like to avoid doing.

≢-nonZero :  {p}  p  0ℚᵘ  NonZero p
≢-nonZero {mkℚᵘ -[1+ _ ] _      } _   = _
≢-nonZero {mkℚᵘ +[1+ _ ] _      } _   = _
≢-nonZero {mkℚᵘ +0       zero   } p≢0 = contradiction (*≡* refl) p≢0
≢-nonZero {mkℚᵘ +0       (suc d)} p≢0 = contradiction (*≡* refl) p≢0

>-nonZero :  {p}  p > 0ℚᵘ  NonZero p
>-nonZero {mkℚᵘ +0       _} (*<* (+<+ ()))
>-nonZero {mkℚᵘ +[1+ n ] _} (*<* _) = _

<-nonZero :  {p}  p < 0ℚᵘ  NonZero p
<-nonZero {mkℚᵘ +[1+ n ] _} (*<* _) = _
<-nonZero {mkℚᵘ +0 _}       (*<* (+<+ ()))
<-nonZero {mkℚᵘ -[1+ n ] _} (*<* _) = _

positive :  {p}  p > 0ℚᵘ  Positive p
positive {mkℚᵘ +[1+ n ]   _} (*<* _) = _
positive {mkℚᵘ +0         _} (*<* (+<+ ()))
positive {mkℚᵘ (-[1+_] n) _} (*<* ())

negative :  {p}  p < 0ℚᵘ  Negative p
negative {mkℚᵘ +[1+ n ]   _} (*<* (+<+ ()))
negative {mkℚᵘ +0         _} (*<* (+<+ ()))
negative {mkℚᵘ (-[1+_] n) _} (*<* _       ) = _

nonPositive :  {p}  p  0ℚᵘ  NonPositive p
nonPositive {mkℚᵘ +[1+ n ] _} (*≤* (+≤+ ()))
nonPositive {mkℚᵘ +0       _} (*≤* _) = _
nonPositive {mkℚᵘ -[1+ n ] _} (*≤* _) = _

nonNegative :  {p}  p  0ℚᵘ  NonNegative p
nonNegative {mkℚᵘ +0       _} (*≤* _) = _
nonNegative {mkℚᵘ +[1+ n ] _} (*≤* _) = _

------------------------------------------------------------------------------
-- Operations on rationals

-- Explanation for `@record{}` everywhere: combined with no-eta-equality on
-- the record definition of ℚᵘ above, these annotations prevent the operations
-- from automatically expanding unless their arguments are explicitly pattern
-- matched on.
--
-- For example prior to their addition, `p + q` would often be normalised by
-- Agda to `(↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p) / (↧ₙ p ℕ.* ↧ₙ q)`. While in this
-- small example this isn't a big problem, it leads to an exponential blowup
-- when you have large arithmetic expressions which would often choke
-- both type-checking and the display code. For example, the normalised
-- form of `p + q + r + s + t + u` would be ~300 lines long.
--
-- This is fundementally a problem with Agda, so if over-eager normalisation
-- is ever fixed in Agda (e.g. with glued representation of terms) these
-- annotations can be removed.

infix  8 -_ 1/_
infixl 7 _*_ _÷_ _⊓_
infixl 6 _-_ _+_ _⊔_

-- negation

-_ : ℚᵘ  ℚᵘ
- mkℚᵘ n d = mkℚᵘ (ℤ.- n) d

-- addition

_+_ : ℚᵘ  ℚᵘ  ℚᵘ
p@record{} + q@record{} = ( p ℤ.*  q ℤ.+  q ℤ.*  p) / (↧ₙ p ℕ.* ↧ₙ q)

-- multiplication

_*_ : ℚᵘ  ℚᵘ  ℚᵘ
p@record{} * q@record{} = ( p ℤ.*  q) / (↧ₙ p ℕ.* ↧ₙ q)

-- subtraction

_-_ : ℚᵘ  ℚᵘ  ℚᵘ
p - q = p + (- q)

-- reciprocal: requires a proof that the numerator is not zero

1/_ : (p : ℚᵘ)  .{{_ : NonZero p}}  ℚᵘ
1/ mkℚᵘ +[1+ n ] d = mkℚᵘ +[1+ d ] n
1/ mkℚᵘ -[1+ n ] d = mkℚᵘ -[1+ d ] n

-- division: requires a proof that the denominator is not zero

_÷_ : (p q : ℚᵘ)  .{{_ : NonZero q}}  ℚᵘ
p@record{} ÷ q@record{} = p * (1/ q)

-- max
_⊔_ : (p q : ℚᵘ)  ℚᵘ
p@record{}  q@record{} = if p ≤ᵇ q then q else p

-- min
_⊓_ : (p q : ℚᵘ)  ℚᵘ
p@record{}  q@record{} = if p ≤ᵇ q then p else q

-- absolute value
∣_∣ : ℚᵘ  ℚᵘ
 mkℚᵘ p q  = mkℚᵘ (+ ℤ.∣ p ) q

------------------------------------------------------------------------
-- Rounding functions

-- Floor (round towards -∞)
floor : ℚᵘ  
floor p@record{} =  p ℤ./  p

-- Ceiling (round towards +∞)
ceiling : ℚᵘ  
ceiling p@record{} = ℤ.- floor (- p)

-- Truncate  (round towards 0)
truncate : ℚᵘ  
truncate p with p ≤ᵇ 0ℚᵘ
... | true  = ceiling p
... | false = floor p

-- Round (to nearest integer)
round : ℚᵘ  
round p with p ≤ᵇ 0ℚᵘ
... | true  = ceiling (p - ½)
... | false = floor (p + ½)

-- Fractional part (remainder after floor)
fracPart : ℚᵘ  ℚᵘ
fracPart p@record{} =  p - truncate p / 1 

-- Extra notations  ⌊ ⌋ floor,  ⌈ ⌉ ceiling,  [ ] truncate
syntax floor    p =  p 
syntax ceiling  p =  p 
syntax truncate p = [ p ]